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Preface 

Why a Book on Low Latency? 

What a silly question! I mean, come on, why not? Everyone loves code that runs 
fast, and low latency programming is the epitome of all that. I’ve been optimizing 
C++ code for over 30 years now, and I wrote a book on C++ efficiency back in 
the 1990s. There’s so much more in the newer versions of C++11 onwards, and 
that means even more ways to go faster! 

Please Leave a Review 

I hope you enjoy the book! Please consider leaving a review on the website where 
you purchased the book. Since few readers do this, each review is important to me, 
and I read them all personally. 

Feedback and Contacts 

Feedback from readers is welcome. Please feel free to tell us what you think of the 
book, the literature review, or our Aussie AI software. Contact us by email 
via support@aussieai.com. 

Other Books by the Author 

If you want fast code, here are a number of other books with a particular focus on 
AI and fast LLM backends: 

• Generative AI Applications: Planning, Design, and Implementation 

• Generative AI in C++: Coding Transformers and LLMs 

• CUDA C++ Optimization: Programming Faster GPU Kernels 

• CUDA C++ Debugging: Safer GPU Kernels 

• Safe C++: Fixing Memory Safety Issues 

 

 

https://www.amazon.com/dp/B0DMMVCMPQ
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs/dp/B0D14LHGZ6/
https://www.amazon.com/gp/product/B0DK21QQYD
https://www.amazon.com/gp/product/B0DK19V6NH
https://www.amazon.com/gp/product/B0DK9LM8H3


David Spuler                                               6 
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algorithms (i.e., “running” the model after training or fine-tuning), and our research 
is toward the following aims: 

• Fast on-device model inference algorithms, specifically for smartphones 
and AI PCs. 

• Scaling inference algorithms to large volumes of requests. 

• Efficient GPU inference algorithms (hardware acceleration). 

• Non-GPU inference optimization algorithms (i.e., software methods). 

Disclosure: Minimal AI Authorship 

Despite my being involved in the AI industry, there was almost no AI engine usage 
in creating this book’s text or its coding examples. Some text has been analyzed and 
reviewed using Aussie AI’s editing tools, but not even one paragraph was auto-
created by any generative AI engine. All of the CUDA C++ code is also human-
written, without involvement of any AI coding copilot tools. I mean, who needs 
them? 

However, AI was used in several ways. AI-assisted search tools, such as “Bing Chat 
with GPT-4”, were very useful in brainstorming topics and researching some of the 
technical issues. The main cover art image was AI-generated, followed by human 
editing. 

Disclaimers 

Although I hope the information is useful to you, neither the content nor code in 
this work is guaranteed for any particular purpose. Nothing herein is intended to 
be personal, medical, financial or legal advice. You should make your own enquiries 
to confirm the appropriateness to your situation of any information.  

https://www.aussieai.com/


7                                       C++ Low Latency 
 

Many code examples are simplistic and have been included for explanatory or 
educational benefit, and are therefore lacking in terms of correctness, quality, 
functionality, or reliability. For example, some of the examples are not good at 
handling the special floating-point values such as negative zero, NaN, or Inf. 

Oh, and sometimes I’m being sarcastic, or making a joke, but it’s hard to know 
when, because there’s also a saying that “Truth is often said in jest!” Your AI engine 
certainly won’t be able to help you sort out that conundrum. 

Third-Party License Notices 

Except where expressly noted, all content and code is written by David Spuler or 
the contributors, with copyright and other rights owned by David Spuler and/or 
Aussie AI. 

Additional information, acknowledgments and legal notices in relation to this book, 
the C++ source code, or other Aussie AI software, can be found on the Aussie AI 
Legal Notices page: https://www.aussieai.com/admin/legal-notices. 
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Part I: Introduction to Low 

Latency 

  

  

  

“Learning to fly is not pretty but flying is.” 

— Satya Nadella, Hit Refresh, 2017. 
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1. Low Latency Programming 

What is Low Latency Programming? 

Low latency programming is coding an algorithm so that it completes the task in 
the fastest time. In many cases, this is effectively the “user response time” or the 
“round-trip time” for a computation. 

The main uses of low latency programming include: 

• AI kernels — latency is the time between submitting a query, and starting 
to get the answer back. 

• Embedded devices — the system must respond quickly, in real time (e.g., 
autonomous self-driving cars are a large embedded device). 

• High-Frequency Trading (HFT) — latency is the time it takes to submit, 
execute, and complete a trade. 

• Game engines — latency is ensuring that the characters or environment 
moves fast enough to be responsive to user inputs and to keep up with the 
frame rate. 

The main programming language used for all of these low latency algorithms is my 
favorite one. I’ve written books on it! 

C++ for Low Latency Programming 

I’m a fan of C++, so you can take this with some grains of salt. The main 
programming languages for fast latency are: 

• C++ 

• C 

• Rust 

• Assembly 

• Hardware acceleration 
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The C++ is under the hood for most of the above cases. Most AI engines are 
Python at the top level, but C++ in the low-level kernels doing all those matrix 
multiplications. Game engines have historically been written in C++, at least for all 
the low-level stuff dealing with frame rates and 3D animation. Similarly, high-
frequency trading is usually running in C++ at the bottom level. 

You can also use C, which is the longstanding precursor to C++. The C 
programming language is obviously fast, as that was its key design point. C is not 
necessarily any faster than C++, so if you used only a C-like subset of C++, the 
two would be the same speed. However, using C does avoid the temptation to use 
some of the slower features that are available in the higher levels of C++. 

Rust is a language that we refuse to talk about much, if you’re any kind of C++ 
programmer. We’ll only learn Rust if absolutely forced to do so. Apparently, Rust 
is also fast, and more memory safe than C++. But there’s also Safe C++, profiles, 
hardened standard C++ libraries, and other variants of C++ to compete against 
Rust, so it’s a whole big shemozzle. 

Assembly language is faster than any of these higher-level languages. If you speak 
directly to the machine, there are various ways to speed up code. But it’s a very low-
level way of programming, and harder to learn, so the best method is to focus on 
optimizing only the main hot paths with assembly. 

Hardware acceleration is the last option: just buy a better rig. Some of the main 
silicon to consider include: 

• GPUs — AI, anyone? Data centers for cloud AI backends have the biggest 
GPUs. Or there’s gaming desktop PCs with lower-end GPUs. 

• FPGA — this is common in high-frequency trading and quant trading. 

Plus, there’s always that CPU to consider. 

CPU versus GPU 

With all this fuss about NVIDIA GPUs for AI, you might think that a GPU is what 
you need. Not so fast! The characteristics of AI engines and LLMs that make super-
duper GPUs the mainstay of acceleration are: 

• Huge numbers of arithmetic computations, and 

• Highly parallelizable algorithms. 
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AI engines are number-crunching beasts, mostly doing vector dot product, matrix-
vector and matrix-matrix multiplications. Here’s the thing about GPUs: 

  GPUs have throughput not low latency! 

You didn’t hear this from me, but GPUs actually run slow. The clock speed of a 
high-end GPU is often around 1GHz, whereas a high-end gaming PC has a CPU 
clock speed of 4GHz or more. So, if you couldn’t parallelize an algorithm, it would 
run slower on a GPU than a CPU. The key point is this: 

   Throughput + Parallelization = Low Latency 

AI algorithms are very amenable to parallelization. And GPUs have high 
throughput of parallel operations on all those cores. A multi-core CPU has a dozen 
cores, but a big GPU can have thousands. Hence, it crunches data in parallel with 
high throughput, and the net effect is that a GPU runs AI algorithms with very low 
latency. 

Which explains why those data center GPUs cost more than your car! 

AI Engines 

As already examined above, AI engines have an algorithm structure that’s perfect 
for GPUs. The basic point about AI inference algorithms include: 

• Process all of that data, and 

• Hardly any alternate pathways. 

Yes, for every word that an LLM throws out, it has to crunch through multiplication 
operations on every single number in the model. And that’s just for one word. This 
process repeats over and over, and there are very few ways to shortcut the 
arithmetic without losing accuracy. 

In fact, there are two main phases in AI inference with different latency 
characteristics: 

• Prompt processing phase (“prefill”) — process all the input tokens. 

• Decoding phase — emit the answer words. 

 



David Spuler                                               24 
 

The prefill phase has these characteristics: 

• Parallel processing of every token in the input text. 

• Compute-bound (because of that parallelization). 

The decoding phase has opposite characteristics: 

• Sequential algorithm (one output token at a time, called “autoregression”). 

• Memory-bound (loading the entire model each time). 

In fact, the situation with compute-bound vs memory-bound is a little more 
nuanced in the decoding phase. It’s memory-bound overall, but the sub-
components of a layer have slightly different characteristics during the decoding 
phase: 

• Attention module — memory-bound (model weights and KV cache data) 

• Feed-forward network (FFN) — compute-bound (model weights) 

Hence, the double sequence of two matrix multiplications is an intense computation 
in the FFN (also known as the Multi-Layer Perceptron or MLP). However, the 
attention mechanism is memory-bound, mainly from needing to load the “KV 
Cache” data and less so from needing model weights. This characteristic affects the 
overall status of the decoding phase more than FFN computations, causing the 
decoding phase to be memory-bound overall. 

High-Frequency Trading 

HFT and quant trading algorithms have some peculiar characteristics with regard 
to low latency programming. The main point to consider about the algorithm is 
there are conceptually two main code pathways: 

• Cold path — analyze, but don’t trade. 

• Hot path — trigger a trade. 

And here’s the weird part: 

• Cold path — very common. 

• Hot path — rarely executed. 
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This is different from most other types of algorithms, where the main path to 
optimize is also the common path. For non-HFT apps, you crank up the profiler, 
run the whole app, find where it’s spinning the most CPU cycles, and optimize that 
code. 

Not for HFT! 

For HFT, the hot path is the rare path. Despite what people think from the name, 
the algorithm is actually trading much less frequently than it decides not to trade.  

Once the analysis decides to trigger a trade, that is a very hot path, and every step 
must execute with minimal latency. There are multiple actions for a single trade 
from initiation, network submission, processing, and finalization. The whole round-
trip latency of this trade execution hot path is hyper-critical. 

But the analysis part of the HFT code can’t be slow either. The hot path is not really 
just “trade” and should really be thought of as “analyze-and-trade.”  

We can’t have the analysis phase running too slow, or we’ll miss the opportunity to 
trade. So, it’s true that once a trade is triggered, that pathway must be super hot, 
but the analysis phase cannot be a laggard either. Optimizing the analysis phase has 
an element of normal performance profiling of code hot spots, along with extra 
network latency issues from the data gathering phase via exchange network 
connections. 

Intentional Slowness 

Although latency is important, it is worth noting that there are times to go slow. 
The main point is that humans are slower than computers, so the algorithm often 
has to slow down the user interface so that the human user can keep up. 

Game engines are a particular example of this. The computer has to move all of the 
game characters and enemies fast, yes, but also not too fast. The speed of the user’s 
character cannot be too fast for the inputs of the user. Similarly, the enemies cannot 
move too fast, or the user will not be able to evade them or destroy them. 

AI engines don’t really have this problem in text-to-text classic LLMs. The only 
concern for excessive speed is not having the text output too fast to be read. 
However, other types of AI models such as speech and video need to have outputs 
in the right speed range, not too slow, but also not too fast. 
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High-frequency trading is one area that doesn’t really have a “human in the loop.” 
There’s no real need to intentionally slow down the execution of a trade. However, 
there is a need to avoid over-trading too fast, lest the algorithm fail to notice some 
sort of failure.  

But this is the less common case than simply needing to go as fast as possible. 
Reporting a trade back to a supervising user is the last step, and not in the critical 
path. 
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2. Multithreading Optimizations 

C++ Multithreading Optimizations 

Multithreading is the art of parallelizing on a multicore CPU, often as part of low 
latency programming. Threads have been around since at least the 1990s (e.g., 
POSIX threads), even before most CPUs even had “cores,” but recent 
advancements have made them much easier to code.  

C++11 introduced a more standardized thread library called std::thread (along 
with std::mutex and std::atomic), and C++17 then introduced a lot more 
advanced parallelization modes. 

What is Multithreading? 

In this discussion, threads run on the CPU, and you can have many threads per 
CPU (or per “core”). Multithreading and multicore programming are largely the 
same thing, or at least they’re in the same ballpark. 

Other types of threads can differ quite a lot. For example, there is also a slightly 
different idea of “threads” on GPUs in the CUDA C++ programming language.  

You can run 1024 threads on an NVIDIA GPU, but you might not want to do that 
on your CPU lest you run out of stack space. CUDA C++ allows 1024 threads by 
having a quite restricted amount of GPU memory (sometimes called VRAM) 
allocated to the call stacks for each GPU thread in a grid. Hence, stack overflow is 
a thing on GPUs, too. 
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How Not to Multithread 

If you’re looking for a short career as a multithreading programmer, here are some 
suggestions: 

• Launch as many CPU threads as you possibly can, ideally one per vector 
element, just like you do in a low-level GPU kernel for AI inference. 

• Put huge buffer objects as local variables on your call stack, and launch 
multiple threads of that. 

• Fix your huge local buffer variables by making them static, because that 
function won’t ever get run twice at the same time. 

• Use mutexes around every access to all your variables, just to be safe. 

• Recursion will get you fired in any coding job, except university lecturer, 
so it’s best to pretend you’ve never heard of it. 

High-Level Multithreading Optimization 

The first point above all else: multithreading is a high-level optimization in itself. Hence, 
you want to be judicious in choices of where to use your threads, and at what level. 

Some of the issues that control the overall concurrency that is achieved via a 
multithreaded architecture include: 

• Abstraction level choices for splitting the work across threads. 

• Thread pool design pattern — avoid creating and destroying threads. 

• Thread specializations — e.g., producer and consumer threads model. 

• Message-passing design pattern to avoid locking — e.g., with a paired 
future and promise. 

Focusing on the data can also be useful to optimize: 

• Multithreading-friendly data structures — e.g., queues (esp. lock-free 
versions). 

• Maximize read-only and “immutable” data usage — to avoid blocking 
concurrent readers. 

• Advanced data structure read-write models — copy-on-write, versioned 
data structures. 

• Shard data across threads — reduces needed synchronizations (or other 
types of data partitioning). 

• Reduce disk writes — e.g., use in-memory logging with occasional disk 
writes. 
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Ways to optimize by focusing on the execution pathways include: 

• Slowpath removal — keep the hot path small and tight. 

• Defer error handing — most error code is uncommonly executed (i.e., a 
slowpath), so avoid, defer or combine error detection code branches. 

• Cache warming — keep the hotpath bubbling away. 

• Full hotpath optimizations — e.g., for HFT, the hotpath is not just “trade” 
but actually the full latency from data feed ingestion to execution, so it’s 
actually “receive-analyze-decide-and-trade.” 

Some of the more pragmatic points include: 

• How many threads? 

• How long should each thread run? 

• When to exit a thread versus waiting. 

There’s no wrong or right answer to these questions, as they depend on the 
application and the problem you’re trying to solve. 

Low-Level Multithreading Optimization 

There are various ways to modify how you run threads in order to optimize their 
concurrency speed. These are not as impactful as the higher-level thread choices, 
but are still important.  

Some methods to change the lower-level thread architectures include: 

• Core pinning (processor affinity) — every popular thread can have a 
favorite core. 

• Early unlocking — e.g., copy data to local variables, release lock, then do 
the computations. 

• Cache locality improvements (L1 cache and memory prefetch cache) 

• Branch reductions — keep the instruction pointer on the straight-and-
narrow. 

• Lock-free algorithms — avoiding mutex overhead and blocked thread 
delays. 
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Ways to avoid slow-downs in multithreading, and therefore increase speed: 

• Minimizing thread launch and shutdown overheads. 

• Releasing locks early by avoiding unnecessary computation, I/O waits, etc. 

• Minimizing context switches 

• Memory reductions (e.g., allocated memory; reduce thread-specific call 
stack size). 

• Avoid spinlocks (busy waiting) or mitigate them with exponential backoff 
methods. 

• Avoiding “false sharing” from overlap of CPU memory prefetch cache 
lines (e.g., use alignas(64) to separate unrelated atomics). 

• Check std::lock_guard is not unnecessarily delaying the unlock (i.e., 
till it goes out-of-scope). 

Sequential C++ Code Optimizations 

An important point about the code running in any thread is that: it’s just C++ code. 
Each thread is running a sequential set of instructions, with its own call stack. 
Hence, all of the many ways to optimize normal C++ code also applies to all of the 
code in the thread. 

Hence, all of the basic ideas for C++ code optimizations apply: 

• Compile-time processing — constexpr, constinit, etc. 

• Operator efficiency — e.g., replace multiply with bitshift or addition. 

• Data type optimizations — e.g., integers versus floating-point. 

• Memory optimizations — cache warming (prefetching methods), memory 
reductions. 

• Loop optimizations — e.g., loop unrolling, code hoisting, and many more. 

• Compiler hints — e.g., [[likely]] statements. 

• Function call optimizations — e.g., inlining, always_inline, etc. 

• C++ class-level optimizations — e.g., specializing member functions. 

• Algorithm improvements — various non-concurrency improvements, 
such as precomputation, caching, approximations, etc. 

So, the bad news is that once you’ve coded your multithreaded algorithm, you still 
have to go and do all the other types of sequential optimizations.  

Oh, come on, who are we kidding? — it’s loads of bonus fun. 
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3. Hardware Acceleration 

Why Hardware Acceleration? 

Hardware acceleration has come a long way since the Intel 8087 floating-point 
coprocessor in 1980. Every CPU now comes with builtin floating-point operations, 
and even opcode instructions that perform complex mathematics like exponentials 
and logarithms in hardware. 

Parallelizing computations is now where the action’s hot in AI, which needs many 
vectors and matrices running in parallel mode (i.e., tensor computations). The most 
powerful parallel computations are GPUs which can chomp through a continuous 
stream of data in parallel. 

GPUs are not the only type of hardware acceleration. Even without GPUs, typical 
CPUs have multi-core and multi-thread parallelism.  

You can even do small-vector parallel instructions in the CPUs using special SIMD 
opcode instructions. For example, x86 CPUs have SIMD accessible via C++ AVX 
intrinsic functions, and Apple M1/M2/M3 chips support Arm Neon for 
parallelism. 

Types of Hardware Acceleration 

There are lots of different types of silicon chips available for your AI engine. The 
basic types of hardware chips are: 

• Central Processing Unit (CPU) 

• Graphics Processing Unit (GPU) 

• Tensor Processing Unit (TPU) 

• Application-Specific Integrated Circuit (ASIC) 

• Field-Programmable Gate Array (FPGA) 
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If you want to build your own hardware, and there are plenty of research papers 
that do, then use an FPGA or ASIC. Even prior to the AI hype, ASICs proved their 
value in the Bitcoin mining boom, and FPGAs were commonly behind Azure, AWS 
and GCP, particularly around security/data protection. 

If you’re not a hardware designer, you’re more likely to want the main CPU and 
GPU options.  

CPU parallelism is via AVX or Arm Neon SIMD instructions. For GPUs, you’re 
most likely looking at an NVIDIA chip, from the P100 at the low end to the H100 
at the top end (with V100 or A100 in the middle). Alternatively, the TPU is a special 
custom AI chip created by Google, and is in the same vein as other GPU chips. 

CPU Hardware Acceleration 

Many of the major CPU chips offer builtin hardware acceleration. 

• x86/x64 (Intel/AMD) — AVX SIMD instructions (including AVX-2, 
AVX-512, and AVX-10) 

• ARM — Neon SIMD instructions (e.g., on phones) 

• Apple M1/M2/M3 — ARM Neon, Apple AMX instructions, or Apple 
Neural Engine (ANE). 

AVX intrinsics can be used on x86/x64 platforms with Microsoft MSVS or 
GCC/Clang C++ compilers to run CPU data crunching in parallel. 

The ARM Neon is a hardware acceleration processor. ARM-based architectures can 
run the Neon acceleration opcodes, which are 128-bit SIMD instructions that can 
parallelize both integer and floating-point computations. At the time of writing, the 
current version is based on Armv8. Notably, the Apple iPhone platform is based 
on ARM silicon and has Neon acceleration capabilities. 

Apple M1/M2/M3 chips are based on ARM, so the ARM Neon acceleration works. 
There are also some additional Apple-specific hardware accelerations such as Apple 
AMX and Apple Neural Engine (ANE). 
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Detecting CPU Acceleration in C++ 

It is tricky to check what CPU or GPU support is available to your C++ program. 
There are different methods for Microsoft Visual Studio, GCC, and Apple. 

Preprocessor macros. The first point is that you can only use preprocessor macros 
if the “single platform” assumption is true. In other words, if you’re building on the 
single platform that you’re running in production, or you’re a developer toying with 
an engine on your own single PC. 

In such cases, you can detect the current build environment using preprocessor 
macros. For example, if you’re on a Windows box with Microsoft Visual Studio, 
you might try this: 

    #if __AVX2__ 

       // ... supports AVX2 

    #endif 

This works fine if you are running C++ on your developer desktop machine, and 
don’t plan to run it anywhere else. But this doesn’t check runtime availability for 
AVX2 on your user’s machine. It’s only testing whether you’ve got the AVX2 
architecture flag enabled in your compiler on your build machine. Hence, it’s 
misleading and although you can do a #if or #ifdef test for whatever macro you 
like, it isn’t very helpful for multi-platform programming. 

Run-time platform testing. The #if method can check the major platforms that 
you’re compiling on (e.g., Windows vs Linux vs Apple), but you cannot check what 
exact CPU you are running on, or what capabilities it has. The preprocessor macros 
are processed at compile-time, and can only detect what machine it’s building on. 
This isn’t very useful in determining if your user is running the code on a CPU that 
supports SIMD instructions, or if their box has a GPU on it. 

Instead, you need to call C++ intrinsics to detect CPU capabilities at runtime. On 
the x86/x64 architecture this intrinsic uses the “CPUID” opcode. The C++ intrinsic 
calls differ by compile platform: 

• MSVS: __cpuid or __cpuidex (superseding __isa_available in <
isa_availability.h>) 

• GCC/Clang: __builtin_cpu_supports or __builtin_cpu_is fu
nctions. 
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GPU Hardware Acceleration 

For the sticklers, AI GPU chips are not really a “GPU” because that stands for 
“Graphics Processing Unit,” and they aren’t used for “Graphics” in an AI 
architecture (even when creating an image). In fact, they’re really a General-Purpose 
GPU (GPGPU), but nothing other than AI matters in the tech industry, so we stole 
the acronym from the gamers. 

GPUs are great big SIMD processors. There is a huge range of vectorized opcodes 
available for any given GPU. Each GPU isn’t just one vectorized stack, but has lots 
of separate “cores” that process AI workloads (e.g., FMA) in parallel. Each core 
runs a SIMD operation such as a small matrix multiply or FMA in a single GPU 
clock cycle. For example, a V100 “Tensor Core” can do a 4x4x4 half-precision (16-
bit) matrix/tensor multiply in a cycle, which is a lot more advanced than a typical 
vectorized operation. Hence, it’s a parallel-of-parallel architecture with: 

(a) all the GPU cores running in parallel, and 

(b) each core doing vectorized SIMD operations. 

The chips also have their own GPU RAM (sometimes called “VRAM”) and there 
are also multiple levels of caches of that RAM. If you’re assessing the specs of a 
GPU, consider: 

• FLOPs throughput 

• Cores 

• RAM 

• Clock speed 

• Memory bandwidth rate 

• Cooling systems (they run hot!) 

GPU Pricing. If you’re looking at renting a data center GPU, NVIDIA is top of 
the list for AI computations. The choice between a P100, V100, A100, or H100 is 
important. To run a version of Meta Llama2, a V100 is workable for that, but with 
not many instances per box. As of writing, pricing for a V100 runs below a buck an 
hour and there are 730 hours in a month, so you can do the math (pricing varies 
with vendors anyway). You can get an A100 for more than a buck an hour, and a 
H100 for roughly double that (for now). On the horizon, NVIDIA has a H200 
coming mid-2024 with about 141GB RAM (versus the H100’s 80GB), and also the 
B100 in late 2024 for even higher performance than a H200. 
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You can also buy a GPU chip outright from your private jet using your diamond-
encrusted phone. Okay, so that’s a bit of an exaggeration. Pricing changes, but as 
of writing, you’re looking at around ten grand for a V100 by itself, but pricing is 
higher if it’s part of a “system” on a motherboard or a box (and this confuses 
ChatGPT if you ask it about GPU pricing). 

Another option is used GPUs, which are cheaper, but might have spent their prior 
life in a Bitcoin-mining forced labor camp. GPUs do have a limited lifetime and can 
overheat with partial or total failure. 

Detecting GPU Support in C++ 

Detecting GPU capabilities that are available at runtime in C++ is even more 
problematic than detecting CPU accelerators or SIMD instructions. The available 
options for GPU detection include: 

• NVIDIA CUDA C++ compiler (nvcc) 

• AMD ROCm 

• Microsoft DirectML (DirectX) 

• Apple Metal 

• Vulkan API (e.g., vkEnumeratePhysicalDevices, 
vkGetPhysicalDeviceProperties) 

• Low-level GPU shader APIs 

NVIDIA requires CUDA code to be compiled with their nvcc compiler, and the 
compiler itself has builtin mechanisms for testing the GPU capabilities. That results 
of that output can be used to set #define options within the C++ code too. The 
compiler also comes with some builtin defines. 

GPU detection is not just determining if a GPU is available. More detail will 
typically be required, down to “is feature X available” or “which implementation 
of feature X is available.” For example, NVIDIA has a “GPU Architecture” and a 
“GPU Feature List” to test for capabilities. 

Assembly Language versus Intrinsics 

Assembly language, or “assembler”, is the low-level language for CPU machine 
instructions. Like C++, it is still a symbolic human-readable language, but unlike 
C++, it translates mostly one-to-one to machine code instructions. The syntax for 
assembler is much simpler than C++, and more obscure, but it’s also very, very 
fast. 
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When to use assembly language. The first question to ask yourself before writing 
assembler in C++ is whether you need to. The use of assembler should only be 
considered for the most bottlenecking parts of the code, like deep inside the inner 
loops of a GEMM kernel. Otherwise, you’re probably micro-optimizing something 
that’s not that critical. 

Another question is whether to use “intrinsics” instead of assembler. Each C++ 
compiler has literally hundreds of builtin low-level functions called “intrinsics” that 
are very fast, probably because the compiler-writers have written them in assembler. 
There are also lots of intrinsics to use for GPU operations and CPU SIMD 
extensions such as AVX-512. There are also intrinsics that map one-to-one to x86 
CPU instruction codes on that platform. Look through the long list of C++ 
intrinsics for your compiler platform to see if there’s one that does what you need. 
The use of intrinsics is via a standard C++ function call syntax, so you don’t need 
to learn assembler to take advantage of them. 

Assembly language syntax: Here are some of the basics of assembly language 
coding: 

• Assembly code filenames usually have a suffix of “.S”, “.s” or “.asm” 
(but don’t need to). 

• Inline assembly inside C++ programs could be via the asm("string") 
syntax, __asm__("string"), or asm { tokens }, depending on the 
compiler. 

• Comments start with a semicolon (but you can also use C++ comments 
for inline assembly). 

• One line per assembly statement. 

• Jump or branch labels need a suffix colon and should start a line (either 
their own line or before a statement). 

Disadvantages of Assembly Language: The reason that the C language came 
into being was to overcome some of the low-level problems of programming in 
assembly or machine code. There are various downsides to using assembly 
language: 

• Non-portable — assembly is specific to the CPU and many features 
depend on CPU sub-releases. 

• Pitfalls — and you thought C++ had troubles. 

• Maintainability — few programmers know assembly. 

• Complexity — everything’s harder at the low-level. 

To summarize, there’s only two reasons to use assembly language: speed and 
security (of your job). 
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Inline Assembly Language 

Most C++ compilers support features allowing you to specify assembly language 
sequences in the middle of a C++ program, which is called “inline assembly 
language.” You don’t need to put assembler into a separate code file, because you 
can use assembly language directives inside C++ sequences. 

The directive to use to introduce an assembly language statement into C++ is 
somewhat compiler-dependent, but the whole concept of assembly language is 
platform-dependent anyway! 

The “asm” expression is the official C++ standard version. This is like a function 
call with a semicolon ending it. The asm statement contains the assembly language 
statements inside a large string constant, ending with a newline escape (i.e.,“\n”), 
inside round brackets. Multiple assembly commands can be merged by putting two 
string literals on subsequent lines and using the adjacent string literal concatenation 
feature of C++. 

    asm ( 

      " ; ... instructions\n" // C++ Comment 

      " ; ... more instructions\n"  

    );  

The Microsoft style is different, with a code block rather than an expression. You 
don’t need to put the assembly statements inside a string literal, and you don’t need 
the “\n” newline escapes, either. The basic syntax looks like this: 

    __asm { 

       ; ... instructions // C++ comment  

    } 

This is the Gnu and Clang style with “__asm__” as a C++ function-like expression 
(similar to “asm”): 

    __asm__ ( 

      " ; ... instructions\n" // C++ Comment 

    );  

Mixing C++ and assembly language is not something recommended just for fun. 
Not only do you need to know the assembly statements and all about the CPU 
registers, but you’ll need to know about function calling conventions 
(e.g., __cdecl vs __stdcall vs __thiscall) and name mangling in C++. 
Which actually sounds kind of fun. 
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4. System Optimizations 

Optimizing the Whole System 

There’s a lot of moving pieces in a whole low latency system. Optimizing them is 
an elegant dance, where each component plays a part. There’s no single answer to 
this, and it’s an ongoing process of continuous efficiency improvement. 

Instead, you need to look at all the different components in your hardware and 
software stack. At each layer, you need to consider: 

• Better or newer components 

• Configurations of the component 

• Optimized programming 

The good news is that optimizations to most of the layers are cumulative. You can 
optimize the hardware, the C++ software, and the network, and get a triple benefit. 

Low Latency System Components 

If you want to build a low latency system, here are some of the basic components 
in your stack. A single system may include: 

• Hardware — CPU, GPU, FPGA, NPU, etc. 

• Memory (RAM) 

• Disk storage — e.g., SSD (NVMe) 

• Network interface card (NIC) 

The software stack looks like: 

• Operating system kernel layer — Linux or bust. 

• System software tools and services/daemons 

• Compiler tools and system libraries 

• Middleware software (e.g., Kafka) 

• API/SDK clients (e.g., HFT exchange connectivity) 

• Application software (your C++!) 
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Beyond the single system, there are various other system components: 

• Network switch or router devices 

• Network connections (e.g., wired, optical, microwave) 

• Load balancer devices 

• Backup storage devices 

Multithreading and SIMD CPU Instructions 

You can double up! C++ multithreading software can be interleaved with CPU 
SIMD instructions as an optimized optimization. It’s totally allowed, and you can 
even put it on your resume. The idea is basically this structure: 

• Multithreading architecture — higher-level CPU parallelization. 

• SIMD instructions — lower-level CPU vectorization. 

Some of the main CPU architectures with SIMD parallelization include: 

• AVX — x86 (e.g., Intel or AMD) 

• ARM Neon — iOS/Mac 

Note that there are variants of each of these SIMD architectures, available on 
different chips. For example, AVX has AVX-1 (128 bits), AVX-2 (256 bits), AVX-
512 (you can figure it out), and AVX-10 (1024 bits). 

Multithreading and GPU Vectorization 

If you’ve sold your car to buy a PC that has both a fast CPU and a high-end 
NVIDIA GPU, there’s good news to think about while you ride the bus: both chips 
run at the same time. (Wow, in parallel, even.) 

In fact, there are “threads” on both the CPU and the GPU. However, C++ CPU 
threads are much higher-level than the CUDA C++ threads on the GPU. The idea 
is: 

• CPU threads — big chunks of work. 

• GPU threads — very granular computations. 
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On the GPU, you might code vector addition with one GPU thread doing the 
addition in every element of the vector, up to the 1024 maximum. And if your 
vector has more than 1024 elements, you’d split it up into 1024 sub-sections and 
use “striding” to do it. But I digress. 

CPU threads are not that granular, and are used to do quite large chunks of work, 
not just one addition instruction. For example, you might have threads pulling 
incoming user requests off the queue, and a thread might handle the entire user 
request, perhaps launching some other threads on the CPU or GPU to do so. 

There are some parallels (haha) between coding CPU and GPU threads: 

• Both types of threads have a call stack. 

• Both have “global” or “shared” memory to use across threads. 

• Overhead of thread launches and exits are a thing for both CPU and GPU 
threads. 

Note that there’s also a new generation of “mini-GPUs” called a Neural Processing 
Unit (NPU), which aren’t as powerful as a fully-fledged GPU. NPUs tend to be 
used on “AI Phones” and other “edge” devices, which aren’t as powerful as a PC. 
Most of the comments about combining C++ multithreading and GPU coding also 
apply to the use of NPUs, except a little slower. 

Going for the Triple-Double 

You can even triple up your parallelism: 

• Multithreading/multicore (CPU) 

• SIMD instructions (CPU) 

• GPU vectorization 

Is there a way to do four levels of coding parallelism in just one C++ program? 
Yes, of course: 

• Linux processes (parallelism at a higher level). 

• Networking communications (the NIC runs parallel, too). 

There are some optimizations of those things, too. 
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Advanced Linux O/S Optimizations 

It doesn’t end with the C++ code. There are other things you can optimize in the 
Linux O/S: 

• Process priorities — be nice and turn yours up to eleven! 

• Linux system processes — turn off the various Linux system processes that 
you don’t need (so they don’t compete for CPU time). 

• Kernel bypass — direct NIC manipulations. 

• Overlap communications and compute — e.g., PCIe bus GPU-to-memory 
upload/download. 

• Networking technologies — e.g., TcpDirect and Onload; RDMA. 

• Linux kernel optimizations — e.g., network buffer settings; disable writes 
that update the “file access date” when reading a file. 

• Linux system settings — ensure you don’t have accounting or security 
modes on. 

There’s also some other items on the advanced menu: 

• Overclock your CPU (and the GPU) 

• Buy a bigger box 

• Get a faster SSD disk (e.g., NVMe) 

• Assembly language 

• Microwave communications 

• FPGA 

There’s always more, but I’ve run out of room in the e-book. 

Serving and Deployment Optimizations 

If your software has to do multiple things at once, such as talk to multiple people 
(users), or communicate with multiple stock trading platforms, then there are many 
system-level practicalities that affect latency. 

If your low latency application is a public-facing consumer website, there are a lot 
of deployment issues to scale up to a lot of users. Some of the issues to consider in 
the whole end-to-end latency of a request going through a system include: 

• DNS lookup time 

• Connection handshake time 

• SSL time 
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• Load balancing 

• Round-robin DNS 

• Parallelization (multiple servers) 

• Utility servers 

• Caching (e.g., etags) 

• CDNs 

• Database lookup time 

• Database indexes 

• Keep-warm server architectures 

Building a low-latency system is more than just coding up some C++. You have to 
put together a bunch of off-the-shelf components. 

Network Optimization 

If your algorithm has to talk between two computers, there’s a network in between. 
The time spent sending data across the wire and back is a key part of the latency. 
Faster algorithms need to optimize the network traffic.  

The main techniques for network optimization include: 

• Higher bandwidth network connections 

• Advanced network protocols 

• Compressing network data sizes 

• Spreading bandwidth usage over time (avoiding peaks) 

• Overlapping computation and communications 

• Direct access to peripherals (local and remote) 

• Direct access to memory (local and remote) 

• Sticky sessions (keeps session data local) 

• Sharing cache data between multiple servers 

There’s a whole book that needs to be written about network optimizations! Should 
be done by Tuesday. 
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Part II: Multithreading 

Optimizations 

  

  

“Life moves pretty fast. 
If you don’t stop and look around 
once in a while, you could miss it.” 

— Ferris Bueller’s Day Off, 1986. 
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5. False Sharing 

False Sharing and Cache Line Sizes 

False sharing is a slug in C++ multithreaded code preventing two threads from 
running as fast as they should. The idea of “false sharing” is that two threads can 
interfere with each other’s memory caching. The sharing is “false” because it can 
occur with data that’s not actually being intentionally shared between the threads, 
but is impeded simply because the memory addresses are too close together. 

Why does it occur? The CPU’s L1 and L2 caches don’t just cache in single bytes, 
16-bit words, or even 32-bit integers. Instead, they have caching in “chunks” in the 
hardware level, which are called “cache lines” (also “cache sectors” or “cache 
blocks” or “cache line sizes” or “bananas in pyjamas” if you prefer). 

How big? Some examples of common sizes of these cache lines include: 

• Intel CPUs — 64 bytes. 

• Apple M2 — 128 bytes. 

• Some AMD and other CPUs — 256 bytes. 

Note that you can get this number for the L1 cache line size in bytes 
programmatically in C++17 via these functions, declared in the <new> header: 

• hardware_destructive_interference_size 

• hardware_constructive_interference_size. 

What this means is that, on an Intel CPU, the caches are updated 64 bytes at a time, 
because one “cache line” is read or written as the minimum size.  

This is good because: 

• Cache loads are 64 bytes in parallel (in hardware). 

• Cache writes (updates) store 64 bytes in parallel. 
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But this is bad because: 

• Invalidating one cache byte also invalidates all 64 cache line bytes. 

This is where we have a slowdown from false sharing. If one thread sets any value 
in a 64-byte cache line, then all of the other 63 bytes are also invalidated in the 
cache. If a second thread needs to use any of those other 63 bytes, then it needs a 
cache line refresh. Slowness ensues. 

Example of False Sharing 

A common example would be two integers, each 4 bytes in size, but close together 
so that they sit inside the same 64-byte cache line. The most common problems 
arise with atomics or mutexes close together, but they can affect any global variable. 

Hence, first a simple example without any atomics, mutexes, or other thread 
synchronization. Let’s just look at two threads that are updating their own global 
variable, with no overlap between the threads. In theory, these two threads should 
not affect each other at all. In reality, there are CPU cache lines. 

Here are our two global counter variables: 

   int g_counter1 = 0; 

   int g_counter2 = 0; 

In practice, false sharing is more likely to occur with two atomics declared close 
together. However, in this example we’re just testing with two completely unrelated 
threads, with absolutely zero synchronization happening between them. They really 
shouldn’t impact each other, if not for false sharing. 

Here is the sequential code, which sets two global variables: 

   void runtest1_no_threads(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter1++; 

      } 

      for (int i = 0; i < n; i++) { 

         g_counter2++; 

      } 

   } 
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Here are the two threads that aim to set those two global variables in parallel. Note 
that each thread only accesses one variable, without any “sharing” going on. 

   void thread1(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter1++; 

      } 

   } 

 

   void thread2(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter2++; 

      } 

   } 

And here’s the basic thread launching code: 

   void runtest1_threads(int n) 

   { 

      std::thread t1(thread1, n); 

      std::thread t2(thread2, n); 

      t1.join(); 

      t2.join(); 

   } 

Finally, here is the timing code using <chrono>: 

  g_counter1 = g_counter2 = 0; 

  auto before = std::chrono::high_resolution_clock::now(); 

  runtest1_no_threads(n); 

  auto now = std::chrono::high_resolution_clock::now(); 

  auto diff = std::chrono::duration_cast( 

                           now - before).count(); 

  std::cout << "Time (no threads): " << diff  

            << " microseconds" << std::endl; 

Here are the speed results from executing the sequential and threaded code for 100 
million iterations using g++ on Linux. 

   Time (no threads): 256079 microseconds 

   Time (2 threads): 209341 microseconds 
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Note that the threaded code does not actually run twice as fast as the sequential 
code, despite having two threads that should run in parallel. In fact, it only improves 
on the sequential code by about 19%, rather than 50%. Why? 

It’s the magic of false sharing, whereby one thread writing to its variable slows down 
the other unrelated variable that’s only being used by the other thread. The two 
threads are constantly writing to their own variable, which messes with the cached 
value of the other global variable used in the other thread. It’s kind of like 
entanglement in quantum physics, if you like that kind of thing. 

Detecting False Sharing 

According to the documentation, Valgrind’s DRD tool should be able to detect 
false sharing (and numerous other thread errors). However, I ran the command: 

    valgrind --tool=drd ./test1 

I did not get any warnings: 

    ERROR SUMMARY: 0 errors from 0 contexts 

On closer reading of the DRD documentation, DRD seems to only detect a false 
sharing situation if the two threads are running on different cores, which may have 
been the reason. 

Solutions for False Sharing 

There are a few coding solutions to prevent false sharing. The basic idea is ensuring 
that the addresses of unrelated thread-shared global addresses are not too close. 
Options include: 

• Putting global variables in random spots throughout your C++ code. 

• Using alignas to enforce address spacing on alignment boundaries. 

The first one is kind of a joke, although it would probably work in most cases. 
However, it’s not technically guaranteed where the linker will put unrelated global 
variables in the address space. 

A more elegant solution is to put variables, especially atomics, on address alignment 
boundaries. The idea is to ensure that each important global variable is alone in its 
64-byte block.  
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The global variables in our declarations become: 

   alignas(64) int g_counter1 = 0; 

   alignas(64) int g_counter2 = 0; 

By declaring them both as alignas(64), it guarantees two things: 

• The variables start on a 64-byte alignment boundary (we don’t care about 
this here), and 

• They are the only variable in that 64 bytes (this fixes false sharing). 

The downside is that each 4-byte integer is stored in 64 bytes, so there’s 60 bytes 
unused padding added to global memory usage. But it’s better to pad memory than 
to waste CPU cycles! (On the other hand, the CPU cache lines are also loading and 
storing 60 unused bytes, so we’ve somewhat undermined the efficiency advantages 
of the L1/L2 cache lines for this 64-byte block.) 

Anyway, who cares, it works! Here are the faster speed measurements just from 
adding alignas statements: 

   Time (no threads): 260277 microseconds 

   Time (2 threads): 133947 microseconds 

Wow! It’s almost exactly half the time! The performance gain is about 49%, which 
is much better than 19% (due to false sharing slowdowns), and is close to the 50% 
gain we were aiming for with two threads. Maybe there’s something to this 
multithreading stuff, after all. 

Some Final Tweaks 

As a finesse, you can assure that the addresses are far enough apart by simply 
checking in code. One possible method to make sure that some junior code jockey 
hasn’t deleted your alignas statements: 

    assert( (char*)&var2 - (char*)&var1 >= 64); 

Unfortunately, you can’t do it faster at compile-time, since addresses of global 
variables are not “constant” enough for the compiler: 

    static_assert((char*)&var2-(char*)&var1>=64); // Fail 
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Note that some CPUs have cache line sizes up to 256 bytes. Hence, you might 
need alignas(128) or alignas(256) on those platforms. 

Note also there are various other non-standard ways to achieve alignment, most of 
them having existed on platforms prior to the alignas specifier in the C++ 
standardization. For example, GCC has a whole set of old builtins. Feel free to use 
those old things and charge extra because you’re writing antique C++ code. 

Another point is that false sharing slowdowns can arise for non-global variables, 
such as dynamic allocated memory or stack addresses. It’s not very likely for two 
threads to see contention over stack addresses inside their respective call frames, 
but it can occur with allocated memory blocks that are shared. There are various 
ways to get aligned addresses inside dynamic memory allocation, including aligned 
memory allocation primitives, so the same ideas can solve the problem. 

Nevertheless, atomics declared as global variables are probably the most likely area 
where false sharing can occur. This suggests a general rule: all global atomics should 
be declared as alignas. I’m not sure I agree, and it does sound a bit drastic. This 
does avoid the performance slug of false sharing, but it will also waste significant 
memory with padding bytes. 
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6. Branch Prediction 

What is Branch Prediction? 

Branch prediction is an optimization in the CPU whereby efficiency is improved by 
considering upcoming branches. The CPU in its execution tries to accurately predict 
which of the two paths of a branch is more likely to be taken.  

Some CPUs also do “speculative execution” of the future instructions, to get ahead, 
which must be discarded if the “wrong” branch is actually executed by the code. 

For the programmer, these branch prediction capabilities give the opportunity to 
further optimize your code to capitalize on the CPU’s abilities. Optimization 
techniques for the C++ programmer include: 

• Eliminating branches in the hotpath so that the code runs straight and 
narrow (i.e., fast!). 

• Hinting to the compiler about the most likely branches to be executed 
(e.g., [[likely]] and [[unlikely]] specifiers). 

• Keep unavoidable branches in the same neighborhood (e.g., short loop 
bodies). 

Branch prediction has a problem in HFT: the hot path is rarely executed (i.e., 
actually submitting a trade). All of the branch prediction logic would try to run the 
cold path, as it would always be predicted. But what we want is for the branch 
prediction logic to always choose the hot path, even though it would mostly fail to 
be correct.  

Thus, all of HFT is at odds with a whole swathe of computing theory about branch 
prediction. HFT needs a “set opposite world mode” flag, but I’m yet to find one in 
the GCC documentation. 
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Types of Branches 

First things: analyze your hotpath code for branching. The main types of branches 
in C++ code include: 

• if statements and if-else statements. 

• Loop conditions and loop bodies. 

• Loop control statements: break, continue. 

• Function calls and return statements. 

• switch statements (multi-way branching). 

Some of the less obvious types of branches are: 

• Ternary operator (?:) 

• Short-circuiting in the && and || operators 

There are also hidden branches in C++ code features such as: 

• Virtual function calls 

• Function pointers (and function names) 

Branch Compiler Hints 

There are several ways for the programmer to give “hints” to the compiler and its 
optimizer about which pathways are more likely. As always, the compiler is free to 
ignore hints, so you have to check in the assembly output what effect your changes 
have. Some of the ways to give hints include: 

• [[likely]] and [[unlikely]] path attributes (C++20). 

• likely() condition marker (C++20) 

• noexcept attribute (C++11) 

• [[noreturn]] attribute (C++11) 

• [[assume(expression)]] attribute (C++23) 

GCC also has various extensions available to give hints: 

• __builtin_expect(expression, value) (GCC extension) 

• hot (GCC function attribute) 
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Branch Profiling 

Branch profiling is the recording of pathway stats to analyze the most likely 
branches. This can also be re-used in the compiler’s optimization mode, so that the 
optimizer can perform branch-aware optimizations. Hence, there is a two-step 
process whereby better branch prediction can be incorporated into your C++ 
executable code. 

GCC has capabilities to store and use branch prediction statistics in its optimization 
phase. The arguments to use are: 

• -fprofile-arcs (GCC command-line argument) 

• -fprofile-generate (GCC command-line argument) 

• -fprofile-use (GCC command-line argument) 

Following this process will allow GCC to generate more optimal code under 
assumptions based on branch frequency in its seen executions. Obviously, this is 
an automatic method, but needs multiple steps in the build: 

• Compile without branch hints 

• Run the tests 

• Output the branch prediction data 

• Re-compile the code with branch optimizations enabled 

Note that for HFT, the fully hot path (i.e., trade execution) is actually a rare branch, 
so this historical branch data won’t be that useful. One solution is to run GCC in a 
test mode in which the hotpath is always dummy-executed! Other early parts of the 
hotpath in HFT can still benefit in both situations, such as the trading decision 
logic, which is always executed on incoming market data. Obviously, non-HFT 
applications can always benefit, as the most likely paths are also the most heavily-
executed. 

Branch Heuristics 

In the absence of other branch prediction data, the CPU and compiler tools fall 
back on some heuristics. Some of the common ones include: 

• The if code block is more likely to be executed than the else code block. 

• Loops tend to be executed multiple times. 

• Backwards branches are assumed to be loop iterations (and are preferred 
due to the prior assumption). 



David Spuler                                               58 
 

Hence, we can make some heuristic recommendations for how to organize your 
code: 

• Put common case code in the if block. 

• Have error handling in the else block. 

• Don’t use once-only loop executions. 

Branch Elimination 

The simplest way to avoid branch prediction issues is to have fewer branches. There 
are various ways to achieve this, ranging from minor code tricks to re-writing your 
entire algorithm to have fewer conditional tests. 

Which branches to eliminate? The worst kinds of branches that need elimination 
include: 

• Long if-else-if sequences 

• Nested if-else statements 

What data is being tested by a branch condition is also critical, and some of the 
problematic branches are based on unpredictable conditions: 

• Branches depending on user inputs 

• Branches depending on random numbers 

• Branches depending on system clocks 

The best types of conditional tests include: 

• Compile-time known tests 

• Predictable conditions 

The techniques available to eliminate your least favorite branches include: 

• Reorganize the overall algorithm to have fewer branches. 

• Defer or combine error checking for multiple errors so that there’s only 
one error handling branch. 

• Function call optimizations such as inlining and call hierarchy flattening. 

• Loop conditional test reductions such as loop unrolling and iteration 
bounds known at compile-time. 

• Branchless programming techniques and tricks to change conditional paths 
to arithmetic computations. 
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Branchless Programming Tricks 

Branchless programming is a variety of coding tricks to get rid of control flow 
branches. The main approach is to remove conditional tests, such as if statements, 
by using a variety of arithmetic computations instead. Code that has no branches in 
a long block can run very fast on a CPU because of instruction prefetching. 

Advantages of branchless programming: 

• Avoids branch prediction issues (CPU speedup). 

• Avoids warp divergence in CUDA C++ (GPU speedup). 

• Job security 

Possible general software engineering disadvantages of these branchless arithmetic 
bit tricks: 

• Code complexity — isn’t it a good thing? 

• Unreadable code — as if we care. 

• Maintainability — is someone else’s problem. 

Even worse, the speed benefit might be a mirage. The issues include: 

• De-optimizations from too many arithmetic operators — benchmark your 
tricks! 

• Don’t underestimate the optimizer’s capability on simple code. 

• Tricks can confuse the optimizer (undermining any benefit). 

The types of methods for branchless coding include: 

• Bit arithmetic (bitshifts, bitwise AND/OR/XOR) 

• Mapping Boolean flags to 0 or 1 

• Mapping logical operator results to 0 or 1 

• Lookup tables 

• Conditional move (CMOV) assembly statements 

• Ternary operator (?:) 

Some of the more traditional C++ optimizations techniques can also reduce 
branching: 

• Loop code hoisting of conditional tests. 

• Compile-time settings and configurations. 
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Ternary Operator and CMOV 

Using the C++ ternary operator is one way to help the compiler write branchless 
code. Consider the basic if statement: 

    if (x > y) { 

        max = x; 

    } 

    else { 

        max = y; 

    } 

This can be more concisely written with a ternary operator: 

    max = (x > y) ? x : y; 

The ternary operator can be implemented in the compiler backend using a CMOV 
(conditional move) register assignment statement. This is a branchless instruction 
that implements the conditional assignment very efficiently. 

In theory, both pieces of code are equivalent, and the compiler really should 
generate identical code. In practice, the use of the ternary operator makes it easier 
on those poor compiler engineers, because it’s 100% guaranteed that an assignment 
is required, whereas the if statement requires a significant amount of extra 
compile-time static analysis to deduce that both assignments are setting the same 
variable. The C++ compiler is more likely to emit a branchless CMOV assembly 
statement with a ternary operator. 

Boolean Flags are 0 and 1 

Another way to reduce branches is to use Boolean flags in arithmetic, using them 
as having the values of integer 0 and 1. Here’s a simple example: 

    bool inc_flag; 

    int x = 0;  

 

    if (inc_flag) { 

        x++; 

    } 

This can be implemented in a branchless manner: 

    x += (int)inc_flag 
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Note that the type cast to int is not really needed, but helps with readability, and 
ensures you don’t get compiler or static analyzer warnings. 

Whether that is faster is something that needs testing because it forces an addition 
operator into one of the pathways that previously had none, but at least its 
branchless so it helps with branch prediction. 

That was a simple example, but many other ideas are possible. Instead of this: 

    if (clear_flag) x = 0; 

You can try this branchless version: 

    x *= (int)!clear_flag; 

I’m betting that it’s actually slower, since multiplication is an expensive operation, 
but who’s to know without running a benchmark. 

Logical Operators are 0 and 1 

In the same vein, the Boolean values of the && and || operators can be treated as 
0 and 1 in integer arithmetic expressions.  

Here’s an example of the maximum computation: 

    max = (x > y) * x + (y >= x) * y; 

Again, the ternary operator’s CMOV instruction is probably faster than this de-
optimization. 

Bitwise XOR Tricks 

There’s the well-known XOR trick to swap two integer variables without using a 
temporary: 

    x = x ^ y; 

    y = y ^ x; 

    x = x ^ y; 

Don’t worry; nobody understands how this works. But it uses three assignments, 
no temporary variable, and no branches. 
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Sign Bit Extension Masks 

If you’re doing any arithmetic with negative values, you can use bitwise tricks by 
creating two masks depending on the sign bit. The idea is that the bitmask is: 

• All 0’s if the number is positive (or zero). 

• All 1’s if the number is negative. 

In other words, the bitmask is 32 bits all set to the same bit value as the sign bit. 
The bitmask value is either 0 or 0xFFFFFFFF (which is also that artist previously 
known as -1).  

We can generate this using the right bitshift operator: 

    unsigned int mask = x >> 31; 

Yes, I really should portably compute the bitshift count using the better way 
with CHAR_BIT and sizeof(int) as nicely done in [Farrier, 2025]. 

Example: RELU Activation Function 

Let’s have a go at making the RELU function branchless. RELU is an “activation 
function” in LLM backends, and it’s quite simple: 

    if (x < 0) { 

        RELU = 0; 

    } 

    else { 

        RELU = x; 

    } 

In other words, change negatives to zero, but leave positives unchanged. Here’s the 
ternary version (faster): 

    RELU = (x < 0) ? 0 : x; 

The basic idea for a branchless, bitwise RELU is: 

    unsigned int umask = (x >> 31); // All 0’s or 1's 

    RELU = (x | umask); 
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Actually, that’s buggy, with the bit masking the wrong way around. Here’s the 
correction: 

    unsigned int umask = ((-x) >> 31); // All 0’s or 1's 

    RELU = (x | umask); 

Beware this might be a de-optimization, because the ternary version might be a 
single CMOV instructions, whereas this version has three operators: negative, right 
bitshift, and bitwise-AND. 

Sign Bitshift Portability 

There’s a major portability problem with this code, because right bitshift on a 
negative signed integer is actually undefined behavior in C++. The compiler is free 
to shift in zero bits or to sign bit extend on the leftmost bit position, in its sole 
discretion. Hence, you need to check your platform to see what the >> operator 
does, and whether this rightshift bitmask idea will work. 

Note that we cannot fix this by doing the right bitshift on an unsigned type, 
which is guaranteed to shift in a zero bit (well-defined in standard C++, but not 
what we want). Note also that this is only undefined for right bitshift, not for left 
bitshift, which is well-defined and always shifts zero bits in on the right side (again, 
not what we want). 

Of course, you can create the sign-based bitmask more portably by avoiding the 
right bitshift operator, but this loses the branchless benefits: 

    unsigned int mask = (x >= 0) ? 0 : 0xFFFFFFFF; 

That’s safe and slow, and what’s the point of that? 

Lookup Tables 

Precomputation of lookup tables is a fast way to get a double benefit of fast 
computation and branchless code. A good example in the standard C++ library are 
the functions for character types. Here’s a slow branching version: 

    #define islower(c)   (((c) >= 'a') && ((c) <= 'z') ) 

This has lots of computation and there are also branches in the default short-
circuiting of the && operator. 
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A faster version uses a precomputed lookup table with 256 bytes. 

    #define islower(c)  _islower_table[(unsigned char)(c)] 

This is faster and branchless, at the cost of 256 bytes of global memory, and has 
already been done for you in the standard libraries by those uber-brainy compiler 
engineers. 
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7. Lock Contention 

What is Lock Contention? 

Lock contention is a multithreading slowdown where threads are blocked waiting 
on locks held by other threads. If your code has a lot of busy threads, then any of 
the synchronization code (e.g., using mutexes or condition variables) can lead to 
contention over accesses to shared data. 

Note that lock contention is not the same thing as lock overhead. Lock contention 
is the extent to which threads get blocked waiting for a lock. Lock overhead is the 
extra cost of library calls that do lock-related stuff, such as the cost of requesting a 
lock, releasing a lock, creating a mutex, destroying a mutex, etc. 

All multithreaded applications have some level of lock contention, otherwise why 
would it need locks at all? Hence, optimizing to reduce lock contention is something 
that you can’t avoid.  

General points about lock contention include: 

• More threads means more opportunities for lock contention. 

• So does having more locks (all other things being equal). 

• Unpopular shared data is unlikely to cause contention. 

• Fine-grain locking is desirable for often-used data. 

In the worst case, you get to a deadlock situation, which upgrades the lock 
contention problem from a slug to a bug. 

Optimizing Lock Contention 

General strategies for reducing lock contention include: 

• Short critical sections 

• Reduce total lock requirements 

• Acquire locks late 

• Release locks early 
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Here’s the best one: 

• No synchronization — don’t use any locks at all! 

Unfortunately, the “no locks” plan has its limitations, being mostly limited to read-
only data used by multiple readers. Nevertheless, your first thought should be if 
there’s a way to do this without needing to use a lock. 

Some of the specific strategies for using fewer locks or otherwise reducing 
contention include: 

• Consider using fewer threads (so less contention for locks). 

• Maximize lock-friendly data handling (e.g., prefer “immutable” read-only 
data). 

• Review lock granularity (fine-grain vs coarse-grain vs a hybrid strategy). 

• Tolerate lockless output (e.g., out-of-order debug logging messages aren’t 
so bad). 

• Limit block scope of std::lock_guard to release the lock early. 

• Use std::unique_lock and other variants for more flexibility. 

• Copy data to temporary variables to release locks before processing data. 

• Use queues as the preferred method to transfer large amounts of data. 

• Avoid false sharing (can impact lock contention issues). 

• Release locks before blocking system calls, I/O waits, or network actions. 

Some examples of other advanced strategies include: 

• Reader-friendly data structures (e.g., versioned data structures, copy-on-
write). 

• Kernel bypass (for I/O efficiency). 

• Double lock check method (first check without a lock, then acquire the 
lock). 

• Exponential backoff when waiting (e.g., avoiding spinlock busy waits). 

• Shard or partition data across multiple threads (avoids need for locks). 

• Use message-passing via std::promise and std::future rather than 
shared memory. 

• Thread-specific queues and “work stealing” design pattern. 

• Lock-free algorithms with atomics not mutexes (very tricky to get right). 
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Avoid Lock Guard Delayed Unlocking 

The std::lock_guard class is a wonderfully safe way to use mutexes, because 
it helps us avoid deadlocks and severe thread starvation if we forget to unlock our 
mutex (as if!). Unfortunately, it’s too easy to use, and can cause programmers to 
forget about unlocking. 

The problem is that we can accidentally hold the lock for too long, which increases 
lock contention. Here’s an example of the concept: 

    void process_critical_data() 

    { 

        // Step 1. Lock 

        std::lock_guard<std::mutex> mylockguard(g_my_mutex); 

        // Step 2. Get the data... 

        // Step 3. Process the data ... 

    } 

The problem is that we haven’t really thought too much about where we should 
unlock. The above code doesn’t release the mutex until after we’ve finished 
processing the data at Step 3, when the function returns, which is needlessly long. 

One way to fix this would be to use some other more flexible locking wrappers that 
allow explicit control of the unlocking. Your basic choices are: 

• std::lock_guard — can only unlock in its destructor (inflexible). 

• std::unique_lock — allows an explicit unlock call (more flexible). 

A simpler solution is to explicitly control the scoping that sets when the destructor 
of std::lock_guard triggers the release of the lock. Here’s a better version: 

    void process_critical_data() 

    { 

        { 

            // Step 1. Lock 

            std::lock_guard<std::mutex> mylockguard(g_my_mutex); 

            // Step 2. Get the data... 

        } 

        // Step 3. Process the data ... 

    } 

This has added an extra pair of { } braces around the first two steps. This triggers 
the scoping mechanism, so that the std::lock_guard destructor is called and 
the mutex is unlocked immediately after Step 2, at the inner right brace. Then Step 
3 can process the data to its heart’s content without blocking any other threads. 
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Fine-Grain vs Coarse-Grain Locking 

Locking granularity has two basic strategies: go small or go big. Here’s a summary: 

• Coarse-grain — lock an entire data structure while updating it. 

• Fine-grain — lock only in the exact critical code sequence that updates the 
data structure, deep in its internals. 

The characteristics of these strategies can be summarized: 

• Coarse-grain — longer duration, fewer locks overall. 

• Fine-grain — shorter duration, more locks. 

Fine-grain locking improves performance for data that is used often. By limiting 
the granularity of locking, each thread holds the lock for only a short period while 
performing a low-level update, so many threads can have the lock in turn. 

However, fine-grain locking means frequently locks and unlocks, which involves 
some overhead. It also increases the overall complexity of the concurrency 
algorithms by needing multiple locks for small pieces of data, thereby creating 
greater risk of mistakes, such as an incorrect request order for multiple locks causing 
a deadlock. 

Coarse-grain locking can reduce performance because it locks data for a longer 
period of time, when a broader update to a higher-level data structure is performed. 
The chance of lock contention for a long duration is higher than with fine-grain 
locking. Any thread seeking the lock is less likely to find a window to access it if the 
lock is frequently requested, so coarse grain locking is best for rarely-used data. 

The advantage of fewer higher-level locks is simplicity. There is not only a lower 
risk of deadlocking errors, but also fewer chances to go wrong when ensuring 
concurrency is adhered to, and the access to the shared data is properly controlled. 
For example, when updating a large data structure with a single lock, this means 
that concurrency errors cannot occur at a lower level. Thus, it’s easier for the thread 
to maintain a coherent state of the data structure, because there won’t be any 
interleaved changes from other threads. 

Hybrid locking strategy involves using a trade-off: using fine-grain locks for 
frequently-accessed critical sections, and coarse-grain locking for less popular data. 
This can be a pragmatic solution that balances speed with lower development 
complexity and risk mitigation. 
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Lock-Free Algorithms 

Lock-free programming is a method of optimizing multithreaded code to avoid 
locks (i.e., mutexes). The advantages in speed arise from: 

• Overhead of mutexes 

• Lost performance from threads blocked awaiting a resource. 

The main disadvantage of lock-free programming: 

• Your brain will explode. 

The internet is littered with articles about failed attempts to write lock-free 
algorithms, even by some of the best programmers. There are many ways to go 
wrong in the quest to get rid of mutexes. 

Note that “lock-free” programming does not mean that you just search up “mutex” 
in vi, and then hit the “dd” button. No, lock-free programming is not just sequential 
programming. Instead, the idea is to switch to a faster concurrency method than 
mutexes, so this is the main idea: 

• std::mutex — lock-based programming. 

• std::atomic — lock-free programming. 

The overall idea is to use an “atomic” operation instead of a mutex. To make this 
work, it’s usually a quite complex atomic operation, such as a “Compare-And-
Swap” (CAS) operation. 

This is how a CAS operation works, with a number of steps all done atomically in 
one unbreakable sequence: 

• Access a variable (that you want to set atomically). 

• Compare it to the “old” or “expected” value. 

• If it’s equal to the old value, then successfully update to the new value (and 
done). 

• If it’s not equal to the old value, someone else has already updated it, so 
we fail (and then loop around and retry). 
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What a mouthful! Fortunately, C++ has the std::atomic class (since C++11) to 
take care of all that. The main routines to use for a CAS instruction are: 

    std::atomic::compare_exchange_weak 

    std::atomic::compare_exchange_strong 

Note that you will also need to know about “memory orders” around atomic 
primitives, as controlled via the std::memory_order library. 

There are also a variety of non-standard methods to achieve lock-free programming 
with primitives in older code platforms, or in a platform-specific manner. Some of 
the primitives are: 

• InterlockedCompareExchange — Win32 version in <winnt.h>. 

• OSAtomicCompareAndSwapInt — iOS/Mac in <OSAtomic.h> 

• __atomic_compare_exchange — older GCC version. 

Note that the std::atomic class is not actually guaranteed to be a lock-free 
atomic operation on every platform. It’s a good idea to test your platform using the 
“is_lock_free” primitive as part of your initialization or self-testing code: 

 
    assert(std::atomic<int>::is_lock_free());  

Thread Pools 

Thread pools are a design pattern in C++ multithreading that avoids the cost of 
creating and destroying threads by using long-running threads. Instead of incurring 
this thread overhead, a “pool” of available threads have been pre-created, which sit 
there until work is available to be done. The main characteristics are: 

• Idle threads wait for work (e.g., off a task queue). 

• Threads are not destroyed after completing a chunk of work. 

Thread pools are mostly used in a “producer-consumer” design pattern, although 
thread pools can also be used in other ways. There are effectively two thread pools 
in this design pattern: 

• Producer thread pool 

• Consumer thread pool 
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Typically, one or more producer threads adds work items to a queue, such as when 
it receives new data from a network source (e.g., exchange connection in HFT). 
Another group of consumer threads is idle waiting to pull work off the queue. 
Consumers do the work, return the results, and then add themselves back to the 
group of idle consumer threads awaiting more work. 
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8. Hotpath Optimizations 

What is Hotpath Optimization? 

Hotpath optimization is a multithreading C++ optimization in HFT whereby the 
most important code is prioritized and super-optimized. Whereas the traditional 
“hotpath” in C++ code is the most heavily executed code, in HFT the hotpath is a 
rarely executed sequence of high importance (i.e., submitting the trade).  

Hence, optimizing the hotpath can mean different things: 

• Profiling the most heavily executed code (traditional C++ code). 

• Running the GPU profilers on CUDA C++ kernels (for AI applications). 

• Optimizing the rare but most important pathway (HFT applications). 

Using the various C++ profiler tools won’t help you much in HFT hotpath 
optimization. Well, actually it can, but only if you have a way to modify the code in 
test mode so that it always runs the hotpath sequence.  

But take care with this idea, as maybe it shouldn’t really submit a thousand live buy 
orders to the exchange when it’s running under Valgrind in the nightly build. 

Hotpath Optimization Techniques 

The idea with hotpath examination is to put every single instruction under the 
microscope. Especially for HFT, every microsecond counts, and there are many 
ways to squeeze out more speed. There are two main categories of optimizations: 

• Concurrency optimizations — multithreading-related code changes. 

• General C++ optimizations — all of the rest! 

With regard to multithreading, the hotpath should not be subjected to any of the 
delays that can beset a single thread.  
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Some of the methods for speedup include: 

• CPU pinning — give the hot thread its own core (completely avoids 
context switching) 

• Don’t use locking on the hotpath (as much as possible) via lock-free 
coding, read-only data structures or lock-free algorithms. 

• Cache warming via prefetching of shared data needed by the hotpath. 

• Keep the cache warm all the way down into the NIC. 

• Use a lock-free queue data structure to avoid contention issues. 

• Use custom thread pools with only preallocated memory block pools. 

Other than multithreading code changes, there’s another few hundred general types 
of C++ optimizations to consider. There are a number of chapters about this, but 
here’s a smattering of some interesting techniques: 

• Hoist code out of the hotpath by using precomputation. 

• Remove slowpaths by deferring handling of error checks. 

• Maximize compile-time computation (e.g., constexpr, TMP if you 
must). 

• Don’t allocate or free memory; use only preallocated memory or global 
memory. 

• Use in-memory databases for any significant amounts of incoming data. 

• Review data de-serialization and serialization costs. 

• Don’t log, or defer logging to the end, or write to an in-memory logger. 

• Replace every if statement with branchless coding tricks. 

• Examine every code statement in the entire hotpath (even at assembly 
level). 

Odds are high that you’ll find something to improve, no matter how many times 
you look at the same stretch of code. 

Network Optimizations 

In a network-heavy application, such as HFT, there is a lot of importance in the 
speed of networking. Many of the main optimizations are hardware issues: 

• Custom NIC 

• Fast switches 
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Note that there can be multiple networks attached to one server: 

• Public network 

• Private network 

The purpose of a private network is to send messages only between your servers 
and any administrative consoles. This private or “out-of-band” network can be used 
for things like: 

• Monitoring and administration messages 

• Sending data between servers (e.g., quotes data in HFT, or KV cache data 
in LLM inference). 

Although hardware and its related network connections are critical, let’s not forget 
the software. Your C++ code needs to talk to the network, to receive incoming 
data and to emit actions (e.g., a trade in HFT) Network-related optimizations to the 
C++ code in the hotpath can include: 

• Use kernel bypass to custom NICs for fast networking. 

• Keep the client network connection warm (method depends on the API). 

• Use custom wrappers for TCP and UDP network processing. 

For extra speed, you may need to wrap or re-implement the TCP and UDP code. 
Some of the default algorithms for networking introduce some minor safety checks 
and other delays, which interfere with your need for speed. Linux socket 
programming can be a lot of fun. I can remember coding a custom version for 
the select primitive, which is loads of bitmask fiddling. 

Core Pinning 

Core pinning is a multithreading CPU optimization where a thread is “pinned” to 
one of the cores to give it higher priority. This means that important thread that 
runs the hotpath can have guaranteed CPU availability, rather than waiting for the 
default thread scheduling algorithms. Hence, it can be a solution to avoid lock 
contention worries for the main hotpath thread. 

Core pinning is also called “thread affinity” and has multiple other names (e.g., 
“processor affinity” or “CPU affinity” or “CPU pinning”), but if you hear the words 
“pinning” or “affinity” in relation to threads, this is it. 
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Pinning has other meanings in related architectures. There’s a higher-level type of 
pinning whereby whole processes or applications are pinned to a CPU core by the 
operating system, rather than just a single thread, which isn’t quite the same thing. 
Note also that CUDA C++ has another type of “pinned memory” for GPUs, but 
that’s a memory upload optimization rather than a compute improvement. 

The other side of core pinning is that you obviously don’t pin the less important 
threads. All the lower-priority threads have fewer cores available, and are 
downgraded. 

On Windows, you can set up a process-level CPU pinning for an application via 
the GUI. On Linux, there is a “taskset” command that allows running a program 
with core pinning. 

Both Windows and Linux have non-standard system calls that can set up pinning 
for either a process or a thread. Programmatic C++ APIs on Linux are: 

• Pinning processes — sched_setaffinity 

• Pinning threads — pthread_setaffinity_np  

On Windows, these are the C++ APIs: 

• Pinning processes — SetProcessAffinityMask 

• Pinning threads — SetThreadAffinityMask 

The use of core pinning is a very powerful type of hotpath optimization. The main 
pathways are super-optimized because: 

• No context switches 

• Highest priority execution 

• Guaranteed core availability (no delay) 

In-Memory Logging 

The last thing you want is for your hotpath to block waiting for log messages to get 
written to disk. Hence, your options for logging include: 

• Don’t log! 

• Buy a faster SSD disk (what’s next after NVMe?) 

• Store log messages in memory 
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Not logging messages can be an option in some cases. This refers to tracing and 
debugging messages, that aren’t business-critical. Some of the approaches to disable 
logging include: 

• Compiling-out unimportant tracing. 

• Disabling logging but having it still in the code. 

If you use a Boolean control flag to enable or disable logging, this can be an effective 
solution. On the other hand, you can have a lot of these: 

    if (g_debug) { 

        // Log a message 

    } 

These can be inefficient on a hotpath for two reasons: 

• Cost of testing the global flag multiple times, and 

• Extra branches that interfere with branch prediction. 

On the other hand, this can be very flexible and the above costs can be a small price 
to pay in some applications. You can enable or disable the global flag based on: 

• Command-line options (i.e., add a “-debug” setting). 

• Sending a SIGUSR1 signal to the process (toggle debug mode). 

Whatever the choice regarding debug or tracing-related logging, you can’t avoid 
business-related logging. For example, a HFT applications needs to track any actual 
trades sent, and update any risk management applications. 

The solution for this is to use an in-memory logging C++ class. The features that 
you need include: 

• Log messages are copied to an in-memory queue (preferably lock-free). 

• A separate log-writing class pulls these messages off the queue. 

• The thread writing log messages to disk is low-priority in the background. 

In this way, you can have quite extensive logging, but the critical path is all in 
memory, and the slower writing to disk is deferred to a background task that can 
run in the quiet periods. 
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9. Slowpath Removal 

What is Slowpath Removal? 

Slowpath removal is a multithreading optimization whereby the cold paths are 
removed, merged, or deferred. The idea is to give priority to the hotpath by avoiding 
any branches leading to the slowpath, as much as possible. 

Not all code belongs on the hotpath. Some examples of slowpath logic include: 

• Error handling 

• Logging 

• Self-testing code 

Note that I really mean removal of these paths. There are actually two optimizations 
in slowpath removal: 

• Avoiding the cost of testing for errors. 

• Removing branches of code instructions. 

We don’t just want to avoid testing for errors, but we actually want there to be zero 
branches in the hotpath code sequence. The reasons for this include: 

• Branch prediction optimizations (i.e., branch elimination), and 

• Instruction cache optimization. 

Another point is that to make the hotpath short, with good latency in the instruction 
prefetch cache, we want to minimize any slowpath code in that path. Hence, if you 
cannot avoid having a slowpath sequence in the hotpath, then you should 
encapsulate it into a separate function, and don’t inline the slowpath function. In this 
way, only the test for that slowpath condition (e.g., an error flag test), and a single 
function call to the slowpath function, is in the instruction block along the hotpath. 

If the hotpath code sequence is short and tight on the CPU, it runs a lot faster than 
if it has to think about alternative pathways. 
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Error Handling Slowpaths 

Error handling is a common example of a slowpath. Most of the failures and 
exception states of execution are not on the hotpath, as they are uncommon events 
compared to success. They’re called exceptions for a reason! 

The problem with errors is that you have to check for them, even though they never 
happen. Okay, yes, so they can happen, and good programmers always check their 
return codes and so on. But when you’re trying to go fast, you want to focus on 
success and winning. 

The choices for error handling are therefore on the scale between two extremes: 

• Repeatedly check every error (slow) 

• Don’t check for any errors (unsafe) 

There are some trade-offs in the middle ground: 

• Check for fewer errors in production, but more in offline self-testing. 

• Use in-memory logging data structures to defer outputting data to log files. 

• Defer error checking until multiple error statuses can be checked at once. 

Deferring Error Checks 

The idea of deferred error checking is to not immediately check every error status. 
Instead, we try to keep going and ignore possible error states, and then check for 
them as late as possible. 

Traditional error checking is to immediately test for a failure return code: 

    bool oksetup = orderobj.setup(ticker, price); 

    if (!oksetup) { 

        // Fail... 

    } 

    bool oktrade = order.obj.submit_trade(); 

    if (!oktrade) { 

        // Fail... 

    } 

    bool oklog = logger.record(ticker, price); 

    if (!oklog) { 

        // Fail... 

    } 
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The basic structure is a long if-else-if sequence, with error handling interleaved 
into the main hotpath. Yes, you could micro-optimize the above, such as by 
avoiding three separate Boolean variables, but you get the idea. This is a slow 
control flow that mixes the hotpath and the slowpath. 

Faster is to run as fast as possible with all the steps, and only check for problems at 
the end. If we can defer error checking until after the trade has submitted, then our 
error handling code is completely out of the hotpath. Here’s the basic concept for 
doing deferred error checking at the end: 

    bool oksetup = orderobj.setup(ticker, price); 

    bool oktrade = order.obj.submit_trade(); 

    bool oklog = logger.record(ticker, price); 

    if (!oktrade || !oksetup || !oklog) { 

        // Fail... 

    } 

We might optimize this using bit flags for error codes and pass-by-reference 
parameters: 

    uint32_t errflags = 0; 

    orderobj.setup(ticker, price, errflags); 

    order.obj.submit_trade(errflags); 

    logger.record(ticker, price, errflags); 

    if (errflags) { 

        // Fail... 

    } 

The tricky part here is whether the trade submitter or logger functions will crash 
whenever the first function fails. We have to design all the routines to be pass-
through, or at least non-crashing, even if an earlier routine has had an error.  

This is easier said than done! 

You have to take care to really defer the error checks, not just hide them. For 
example, if your second routine needs to check for an error status from the first 
function (so it doesn’t crash), then you haven’t really deferred the error checking 
until after the hotpath has finished. Instead, it’s just hidden further down the call 
stack inside the individual functions. 
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Removing Error Checks 

Safe C++ programming practices always have us doing a lot of extra work to check 
for a myriad of coding problems: 

• Function parameter validation 

• Function error return code checking 

• Assertion failures 

• Self-testing code failures 

• Memory allocation failures 

• File loading errors (e.g., file not found, disk full) 

• Valgrind runtime checking 

But if we want to go fast, many of these can be removed. Goodbye to slow code! 
Hello, speed. 

Not all of the above error situations are that common, and many of them are under 
our own control, since they’re really just checking for our own coding errors. Some 
of the error avoidance strategies for the critical code in the hotpath include: 

• Don’t use memory allocation (avoids allocation failures). 

• Avoid disk-full issues with logging via good Linux admin practices and 
lightweight monitoring. 

• Compile-out parameter validation, assertions, and self-testing code for 
production (but include them in unit tests and offline automated test 
harnesses). 

If compiling out all of the safety stuff gives you concerns, here’s the plan: 

• Don’t write buggy code! 

Oh, wait! That’s not so easy. But here’s what we can do: mitigate against human 
frailty by shaking out all the bugs before they get to production. 

One of the main ways to have very fast production code, but mitigate against 
unforeseen coding failures is to max out the use of automated testing in offline 
mode. Here’s the basic plan: 

• CI/CD — faster unit tests. 

• Nightly builds — longer automated tests, static analysis, etc. 
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We can and should run basic unit tests as part of CI/CD, but then we should thrash 
the whole thing to death in nightly builds. This means to enable lots of self-testing 
code and other very slow tests that would cause developer productivity issues if we 
ran them in CI/CD. Hence, nightly builds should run stress tests under Valgrind, 
even running the same tests across multiple platforms, compilers, and optimization 
levels. We maximize the testing offline to mitigate the risk of removing these tests 
in production. 

Never-Failing Functions 

As programmers, we’ve had it drummed into us that every function should return 
a success or failure status. But, why? 

Some functions should never fail. If it’s a function that does not access external 
resources, the most common reasons for failure are internal ones (e.g., called with 
the wrong parameters) or very rare states (e.g., memory allocation failure). Every 
one of these reasons are things under our control: 

• Don’t call it with bad parameters. 

• Don’t use allocated memory. 

As an example, consider a function to set up an order object to submit a trade, 
which is obviously on the hotpath. This is the traditional C++ style: 

    bool ok = orderobj.setup(ticker, price); 

    if (!ok) { 

        // Handle the error... 

    } 

    // Keep going (submit the trade) 

Here’s a faster method whereby we only check for those “under-our-control” 
coding issues in offline regression tests. The basic idea is to have the error checks 
only in test modes: 

#if SELFTEST // unit test mode 

    bool ok = orderobj.setup(ticker, price); 

    if (!ok) { 

        // Handle the error... 

    } 

#else  // Production mode (hotpath) 

    (void) orderobj.setup(ticker, price); 

#endif 

    // Keep going (submit the trade) 
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In fact, we probably should further optimize the function to have void return type 
in production, and never even think about returning an error code. We could use 
tricky #if sequences, or have two versions of the entire function. If we make 
it inline, then the optimizer might get rid of some of the 
unused return statements, but why do we need them in the first place? 

The main slowness that we can’t get rid of in the hotpath is return codes or 
exceptions from the third-party APIs, network connections, and system resources, 
which could really fail in production. However, we already talked about these above, 
and the strategies to defer these checks to later in the hotpath. 
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10. Cache Warming 

What is Cache Warming? 

Cache warming is a specific type of prefetching optimization aimed at keeping the 
various memory caches fresh. It typically involves scanning through all the memory 
data required for the “hot path,” even though there’s no real intention to use the 
data (until later). The hot path maintains a warm cache, so that when the hot path 
is executed for real (e.g., a trade execution in HFT), then memory accesses are very 
fast. 

There are multiple ways to trigger prefetching of data to keep the cache warm: 

• Low-level C++ prefetching primitives. 

• Copy to volatile temporary variables. 

• Explicit dry-run parameters in the code. 

Unlike other types of CPU prefetching, cache warming is something your C++ 
code does directly, rather than a hardware-enabled feature. It’s up to you to 
determine what data is needed the most in hot path computations, and then pre-
load that data on every pass-through. You effectively do a “dry run” of the hot path, 
but access the memory to ensure it’s maintained in the cache. 

Note that cache warming is not always a guaranteed win. Using the “dry run” 
approach can end up with a lot of extra conditional tests: 

    if (!dry_run) { 

        // Do something 

    } 

This can negatively impact performance in two ways: 

• Runtime cost of testing the flag, and 

• Extra branches of code that slow down CPU branch prediction. 

As with everything in multithreading, you really need to time it to see if these costs 
are less than the gain from faster memory cache accesses. 
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Memory Prefetch Primitives 

Although you can “manually” prefetch data in basic C++ code, there are also some 
builtins that are convenient for larger amounts of data. Some of the C++ primitives 
to use for cache warming include: 

• __builtin_prefetch (GCC) 

• _mm_prefetch (GCC) 

Prefetching is more effective on some data structures than others, with a general 
preference for contiguous data blocks. Cache locality issues with the “cache lines” 
of size 64-256 bytes are another reason. As a practical example, contiguous arrays 
are better than dispersed data structures liked links lists and trees. This means 
that std::vector contiguous memory layouts can be more effectively prefetched 
than the spread-out memory used by std::list objects. 

Volatile Temporary Variables 

Another approach for manual prefetching is the use of volatile specifier on 
temporary variables. By assigning data to a volatile temporary variable, the 
optimizer cannot remove an apparently unused assignment.  

For example, consider if we do this: 

    int temp = my_order_book[0]; 

The C++ compiler may notice that “temp” is not used anywhere else, so it could 
throw away all of the entire assignment statement. The solution is to use 
the volatile specifier: 

    volatile int temp = my_order_book[0]; 

The compiler is forced to load the data into memory even when it seems to be 
unused by the remainder of the block of code, because assigning data to 
a volatile variable is itself a side-effect. 

Note that we only want to declare temporary variables as volatile, but not the 
shared global data arrays we’re trying to prefetch. We don’t want the main data 
structures to have this status. If our main global variables or arrays were declared 
as volatile, this would actually interfere with having them loaded from the 
memory caches. They would be uncached! 
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Dry-Run Executions 

A simple approach to cache warming is to still execute all the steps, even if you’re 
not going to do anything. For example, in HFT, you could call the “execute trade” 
function even if the decision is to not trade any stocks. 

The method is simply to pass a Boolean flag indicating a “dry run” or “test run” or 
“warm-up run” or whatever term you like. A simple conceptual example: 

    if (!dry_run) { 

        orderobj.setup(ticker, price); 

        execute_trade(orderobj); 

    } 

A better way to get more cache warming is to populate all the objects as if you were 
going to actually do a trade. At the very last step, the dry-run flag is tested, and no 
trade gets submitted. 

    orderobj.setup(ticker, price); 

    if (!dry_run) { 

        execute_trade(orderobj); 

    } 

But we really want to warm up the entire path, even the trade execution logic. 
Hence, we go deeper by passing the flag inside: 

    orderobj.setup(ticker, price); 

    execute_trade(orderobj, dry_run); 

And our trade execution code looks like: 

    void execute_trade(Order &order, bool dry_run) 

    { 

        if (!dry_run) { 

            g_order_count++;  // Count total 

            // Other accounting stuff.. 

            // Submit the order... 

        } 

    } 

That isn’t really much better, is it? We didn’t warm anything extra, but just pushed 
the test inside the function. 
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Double Data Trouble 

We really need to actually prefetch some data! One way is to double up all our data. 
The basic data for order count tracking is like this: 

    int g_order_count = 0; 

One common trick is to use an array of two values with two meanings: 

• Live data 

• Dry-run data (unused) 

Hence, our order count becomes: 

    int g_order_count[2] = { 0, 0 }; 

Then we can try this: 

    if (!dry_run) { 

        g_order_count[0]++;  // Live run 

    } 

    else { 

        g_order_count[1]++;  // Dummy 

    } 

The point of the dummy is that we access the [1] array element in order to warm 
up the [0] element (without changing it). This works because of “false sharing” 
with “cache lines,” which is often a slowdown problem, but here they offer an 
advantage. We can warm the cache by touching adjacent array elements, without 
disturbing the main data. (Note that here we don’t use the alignas trick to avoid 
false sharing, because we actually want it to occur!) 

In the spirit of branchless programming, we can make this code tighter by mapping 
the Boolean flag to 0 and 1 integer values: 

    g_order_count[(int)dry_run]++; 

Note that we have actually added extra computation to our hot path! Instead of a 
global variable increment, it’s now an array index lookup plus the increment. We 
need to measure our optimizations to ensure that the gain from memory cache 
warming is greater than the extra cost of these array indexing operations. 
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We’ve also added a large amount of extra computation to our cold path, including 
whole extra function invocations, but we care less about that. 

Our conceptual trade execution routine starts to look like: 

    void execute_trade(Order &order, bool dry_run) 

    { 

        g_order_count[(int)dry_run]++;  // Count total 

        // Other accounting stuff.. same tricks 

        if (!dry_run) { 

            // Submit the order... 

        } 

    } 

The idea is that our “dry run” mode has run over as much of the code as possible, 
only stopping short of actually submitting the order. By maintaining two copies of 
all data, with dry-run and live values, we can prefetch all of those arrays into 
memory caches. 

Problems with Cache Warming 

The above cache warming double-array trick has used false sharing of cache lines 
for good, not evil. And yet it has a problem: false sharing. 

Our use of false sharing was harmless (and helpful) because we assumed only a 
single thread was in use. There’s no cache invalidation slowdown when it’s only one 
thread. The cache warming idea for the L1 and L2 caches requires a single thread, 
although the L3 cache can be warmed for multiple threads.  

Hence, this cache warming idea has limitations: 

• Single thread required for all order submissions (if you want L1/L2 cache 
warming). 

• Thread pools and other multi-thread design patterns are therefore 
problematic. 

We cannot really have a thread pool model where each consumer thread could 
potentially submit a trade. The above cache warming logic only works for one 
thread. If we try to use multiple threads, our cache warming logic is actually a cache 
freezing de-optimization, because we’ve got the “false sharing” problem for real. 
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Even worse, consider what happens if we try to use a thread pool model with the 
following modifications: 

(a) multiple consumers, where each thread tries to decide whether to trade, 

(b) single trade submission thread. 

In other words, multiple decider threads, where each decider then hands off to the 
single trading thread (which is kept warmed). 

But then we’ve made another conceptual error. The hot path should really include 
the decision logic, as the overall latency is from receiving incoming data to 
submitting a trade. However, we haven’t kept the cache warm for these multiple 
“decider” threads, particularly so for all the data they use in deciding whether to 
trade, so the decision modules won’t run fast. 

Possible solutions include: 

• Single thread for all decision and order submission (with L1/L2 warming), 
or 

• Keep multiple threads warm (tricky!), or 

• Modify the cache warming code tricks to use reads only, not writes 
(avoiding the cache invalidation problem), or 

• Only warm up the L3 cache (for multiple threads). 

But these solutions have additional problems: 

• Single order thread idea lacks a failover or backup plan. 

• Single order thread cannot issue two trades without blocking. 

• Warming multiple threads means each thread needs its own copy of the 
data. 

None of these solutions are great, so that’s why they pay you the big bucks. 

Further Optimizing Cache Warming 

Another further iteration of advanced cache warming would be to actually submit 
a dummy order, such as if the exchange connectivity allowed the sending of test-
only transactions. Doing this would allow us to keep warm any of the data structures 
that are actually inside the client API of the exchange connection. 
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The advantage of the use of dry-run cache warming is that all the various data 
structures used to prepare a trade are kept warm in the memory caches (L1/L2/L3). 
The downside is extra processing that occurs whenever you’re not trading. In other 
words, there are extra computations done on the “cold path” every time, just to 
keep the “hot path” all snuggly and warm. 

The code to traverse all the memory data structures can be a significant cost in itself, 
although it only occurs during the cold path. There are several advanced tweaks to 
optimize your cache warming code: 

• Exploit cache line sizes for quicker loading of contiguous data. 

• Limit cache warming to the total L1/L2/L3 cache size. 

A further optimization of cache warming is to use “cache lines” to your advantage. 
The L1/L2 caches don’t work on individual bytes, but on blocks of memory called 
“cache lines”, which are usually sized between 64 bytes and 256 bytes (e.g., Intel is 
usually 64 bytes, Apple M2 is 128 bytes, some other CPUs are 256 bytes). Hence, 
to load a “cache line” of 64 bytes on an Intel CPU, you only really need to load one 
of the bytes from the 64-byte block. Your C++ code doesn’t need to explicitly 
touch every element of a vector to have the entire vector hot as a fresh-baked oven 
loaf in the cache.  

Admittedly, this doesn’t speed up the hot path itself, but only the preliminary cache 
warming code. 

An important limitation of cache warming is the maximum sizes of the L1, L2, and 
L3 caches. If you’re trying to warm up the CPU cache for your 7B AI model, that’s 
7 billion floating-point numbers, and trying to keep them all in the CPU cache isn’t 
going to work. On the other hand, you can probably preload an entire 7B model 
into the CPU RAM (i.e., global memory, not the caches), or into the GPU’s VRAM, 
but that’s preloading not cache warming, and it’s a slightly different story. 

If you know your CPU’s cache size, you can optimize your cache warming strategy 
by only trying to prefetch that much data. If you load more data than the cache size, 
the newly warmed data is just evicting other data from the cache that you prefetched 
earlier in the warming code. Hence, prefetching exactly the amount of data equal to 
your CPU cache size is the optimal cache warming strategy. 
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Part III: C++ Optimizations 

  

  

“Design is the fundamental soul of a human-made creation 
that ends up expressing itself in successive outer layers 

of the product or service.” 

— Steve Jobs. 
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11. Timing and Benchmarking 

Timing C++ Code 

There are a number of reasons why it can be useful to time the execution of a 
program. Timing C++ code can be useful in determining which statements should 
be optimized whereas profilers may only indicate which functions are consuming 
time. Timing code can also determine the relative efficiency of various operations 
and give you valuable information about writing code for your machine (e.g., is 
shifting faster than integer multiplication?). 

There are several ways to time your C++ code, some of which have existed for 
decades, and some that are newer and standardized. Here’s a list of some options: 

• time shell command 

• time C++ function 

• clock C++ function 

• <chrono> standard C++ class 

Another way to examine the efficiency of a C++ operation is to look at the 
assembly code. This is examined later in the chapter. 

If the full execution time for a program is all that is needed, the 
Linux time command can be used to calculate the time required by a program. 
There are two versions — a stand-alone utility in /bin and a command built 
into csh.  

The command to run is usually: 

    time a.out 

A different executable name could also be used and command line arguments can 
also be specified. 
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The Chrono Class 

The std::chrono library is an awesome piece of work, and has many features. 
It’s been part of the C++ standard since C++11. I’m only going to touch on a 
handful of basic measurements here. 

Here’s an example of how to measure the duration between two events: 

   auto bef = std::chrono::high_resolution_clock::now(); 

   // ... Do something 

   auto now = std::chrono::high_resolution_clock::now(); 

   auto diff = std::chrono::duration_cast(now - bef).count(); 

   std::cout << "Time: " << diff  

             << " microseconds" << std::endl; 

There are other ways to do this, as the library is very flexible, with many capabilities. 
Reading the documentation for this class is enough to make my head spin. Someone 
had a lot of time to spend on time! Kudos to them. But one way is good enough 
for timing our C++ code, so let’s move on and leave the rest as an exercise for the 
reader (LOL!). 

The Clock Function 

If a more detailed speed analysis is needed, it is possible to add C++ self-
instrumentation code to your program to monitor its own performance. The basic 
idea is to use the standard library functions to monitor the time before and after an 
action. The advantages of the clock function over the new-
fangled std::chrono library: 

• Measures CPU clock ticks, not wall clock time. 

• Works in C, if you need it, not only C++. 

• Only have to remember one function name! 

The oldest useful function is the “clock” function which has existed since the C 
programming language. The clock function counts the number of clock ticks 
since the program began executing. The “time” function, which keeps track of the 
real calendar time could also be used, but it is not a true indication of processor 
time on a large multi-user system. The clock function is correct for both single 
user and multi-user systems. 
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The clock function returns a value of type clock_t (typically long or int) that 
counts the number of clock ticks. This value can be converted to seconds by 
dividing by the constant CLOCKS_PER_SEC, also declared in <time.h>. 

The basic idea of timing C++ code blocks is to call the clock function before and 
after an operation and examine the difference between the number of clicks. The 
code below examines the relative speed of shift and multiplication operations on 
int operands. 

    void profile_shifts() 

    { 

        const int MILLION = 1000000; 

        const int ITERATIONS = 100 * MILLION; 

 

        int x = 1, y = 2, z = 3; 

 

        clock_t before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) 

            x = y << z; 

        printf("%d Shifts took %f seconds\n", ITERATIONS, 

            (double)(clock() - before) / CLOCKS_PER_SEC); 

 

        before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) 

            x = y * z; 

        printf("%d Multiplications took %f seconds\n",  

            ITERATIONS, 

            (double)(clock() - before) / CLOCKS_PER_SEC); 

    } 

Clock Problems 

clock Portability Pitfall. Note that some implementations on older Unix versions 
don’t conform to the C++ standard and return the number of clock ticks since 
the first call to the clock function. This means that a single call to clock at the 
end of the program would always return zero.  

Hence, it is more portable to measure the number of clock ticks between two calls 
to clock, one at the start and one at the end. Obviously, you can also put the first 
call to “clock” at the start of the “main” function to avoid this rare glitch. Note 
that on implementations that are correct, a call at the start of “main” may be non-
zero due to the overhead of global and static C++ object instantiations (i.e., 
constructors for global objects), which occurs before entering main. 
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Clock Tick Integer Division Pitfall. Note here that the standard clock_t type 
and CLOCKS_PER_SEC constant are both integers. Hence, here’s a bug: 

    clock_t diff = clock() - before; 

    double seconds = diff / CLOCKS_PER_SEC; // Bug! 

The problem is that it’s integer division, so it inaccurately truncates to an integer. 
You need a typecast to float or double on either side of the division operator. 

    clock_t diff = clock() - before; 

    double seconds = diff/(double)CLOCKS_PER_SEC; // Correct 

Clock Tick Overflow Pitfall. The clock function also has a problem with 
wraparound on some implementations. Because of its high resolution, the number 
of clock ticks can quickly overflow the maximum value that can be stored by the 
type clock_t. On one system the clock function will wrap around after only 36 
minutes. If the program being timed runs for longer than this period, the use 
of clock can be misleading.  

One solution is to use the “time” function rather than “clock” when executions 
are longer, but this usually only has resolution to the nearest second. 

Benchmarking 

Benchmarking is a slightly different concept to tuning, and refers to testing the 
efficiency of certain operations, such as low-level operators, to find a more efficient 
way to do an operation. For example, if you want to compare multiplication versus 
addition, you write a program to run these operations a few million times. When 
changing a program to increase efficiency, you shouldn’t assume that a certain 
operation is clearly faster, but you should benchmark whether the changes have 
noticeably increased the operation’s efficiency (or even decreased it!). 

Techniques for measuring program efficiency range from the stop-watch method 
to the use of sophisticated profiler software tools. If no profiler is adequate, the 
programmer can gain timing information by adding instrumentation statements to 
the program, although there are many pitfalls in attempting to determine the time 
taken by a sequence of statements. 

The measurement of the memory usage and space-efficiency of a C++ program is 
a slightly more difficult problem. There are several types of memory: instruction 
code, static memory, read-only string literals, initialization data, global/static 
variables, the stack, and the heap.  
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Measuring the memory usage of the stack and heap is somewhat difficult because 
of their dynamic nature. However, various tools exist to measure the different types 
of memory, and clever use of C++ programming constructs can also yield 
reasonable data. 

Benchmark programs attempt to examine how quickly your machine executes 
certain instructions, which is more useful for examining a single multiplication 
operation. You mainly use benchmarking for code that’s running in low-level 
kernels, such as CPU speedups (e.g., AVX intrinsics) or examining more fully the 
use of different GPU primitives. 

Consider benchmarking for timing of low-level arithmetic operations on your 
platform. For example, how would you determine whether the integer 
multiplication operation x*2 could be more efficiently replaced by x<<1? 

How can you time these instructions? You obviously cannot just time a single 
operation of each with the “clock” function, because a single click tick contains 
many CPU cycles. So, you have to time thousands or even millions of such 
operations. 

    for (int i = 0; i < 100 * MILLION; i++) { 

        x << 1; 

    } 

We’ve already noted one problem: there’s all this extra loop overhead time for the 
for loop conditional test (the “<” operator) and its incrementer (i++). The loop 
actually has three operations that are all about the same order-of-magnitude cost 
(i.e.,<, ++, <<).  

To get at the operator cost, we’d need to subtract out the loop overhead. We could, 
for example, try to time an empty loop without any loop body, and subtract that 
from our final cost. 

Benchmarking Problems 

Null effect problems. Another problem is that we cannot easily time the operators 
with these statements in the loop body: 

    x << 1; 

    x * 2; 
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The compiler is clever enough to notice that the x<<1 and x*2 statements have no 
effect in the program above (and gives “null effect” warnings). The built-in 
optimizer may even remove them completely. So, they won’t get timed properly, or 
at all, even in a loop. 

Add volatility? One possible solution is that maybe the compiler can be forced to 
avoid this optimization on the original expressions by declaring x as a “volatile” 
variable. 

    volatile int x = 0; 

The volatile qualifier tells the compiler that all accesses to x are important, and 
that it should not remove any. The intended purpose of volatile is to allow the 
declaration of addresses for memory-mapped I/O, debugger-modified variables, or 
for variables modified by other programs (e.g., a semaphore modified by another 
program running concurrently). However, we can use it here to force all accesses 
to x to occur even if they appear pointless. 

On the other hand, by doing this, we’ve lost the ability to see the “real” time cost 
of these operations when they’re running in normal code. Most variables 
aren’t volatile. 

Anyway, it doesn’t even work properly. Unfortunately, the computations of 
the << and * operators in x<<1 and x*2 are not being assigned anywhere, so the 
computations themselves could be optimized out, even though the actual read 
operations on x must occur because x is volatile.  

To force the << and * operations to occur, it is necessary to use their result 
somehow, such as by assigning it to the (volatile) variable x: 

    x = x <<  1; 

Although all of the above improvements will enhance the previous version, a far 
better method of improvement is to time a loop that performs a huge number of 
the operations,.  

Hence, we have to use something like these assignment expressions inside a loop: 

    x <<= 1; 

    x *= 2; 
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The code given here examines the relative speed of 10,000 shift and multiplication 
operations on int operands: 

   volatile int x = 0; // volatile to prevent optimizations 

   clock_t before  = clock(); 

   for (int i = 0; i < ITERATIONS; i++) 

       x = x << 1; 

   printf("%d Shifts took %f seconds\n", ITERATIONS, 

       (double)(clock() - before) / CLOCKS_PER_SEC); 

   before = clock(); 

   for (int i = 0; i < ITERATIONS; i++) 

       x = x * 2; 

   printf("%d Multiplications took %f seconds\n", ITERATIONS, 

       (double)(clock() - before) / CLOCKS_PER_SEC); 

Loop Unrolling 

Unfortunately, the above method of measuring the speed of operations is not 
completely accurate, because it also includes the loop overhead (incrementing i 
from 1 to 10,000) and the cost of the assignment of the result to x. The loop 
overhead can be minimized by placing many operations within the loop, as below: 

    volatile int x = 0; // volatile to prevent optimizations 

    clock_t before = clock(); 

    for (int i = 0; i < ITERATIONS; i++) { 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

    } 

    printf("%d Shifts took %f seconds\n", ITERATIONS * 20, 

        (double)(clock() - before) / CLOCKS_PER_SEC); 

    before = clock(); 

    for (int i = 0; i < ITERATIONS; i++) { 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

    } 

    printf("%d Multiplications took %f seconds\n",  

        ITERATIONS * 20, 

        (double)(clock() - before) / CLOCKS_PER_SEC); 

Unfortunately, the assignment operations are needed to prevent the optimizer 
removing the computations, as discussed above. The only truly effective method 
for removing the cost of the assignment from the measurement is to time another 
separate loop, and subtract its time from that of the other loops, as below.  
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This method also automatically accounts for the loop overhead cost, so the multiple 
operations inside each loop are not needed (and in fact would be incorrect). Our 
final version of the benchmark program is also made more sophisticated to output 
the relative magnitude of the two operations: 

    void profile_shifts4() 

    { 

        const int MILLION = 1000000; 

        const int ITERATIONS = 1000 * MILLION; 

        volatile int x = 0; // volatile to prevent optimizations 

        double time1, time2; 

 

        // Time the loop overhead 

        clock_t before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) 

            x = 1; 

        clock_t loop_cost = clock() - before; // overhead 

        double ovtime = (double)(loop_cost) / CLOCKS_PER_SEC; 

        printf("%d overhead: %f seconds\n", ITERATIONS, ovtime); 

 

        // Shifts 

        before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) { 

            x = x << 1; 

        } 

        time1 = (double)(clock() - before - loop_cost)  

                                     / CLOCKS_PER_SEC; 

        printf("%d Shifts took %f seconds\n",  

                         ITERATIONS, time1); 

        // Multiplications 

        before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) { 

            x = x * 2; 

        } 

        time2 = (double)(clock() - before - loop_cost) 

                          / CLOCKS_PER_SEC; 

        printf("%d Multiplications took %f seconds\n",  

               ITERATIONS, time2); 

 

        // Compare both times, and print percentage difference 

        const float ACCURACY = 0.00001f; // maximum error 

        if (fabs(time1 - time2) < ACCURACY) // (almost) equal? 

            printf("Shift and multiplications: same time\n"); 

        else if (time1 < time2) { 

            printf("Shifts faster by %5.2f percent\n", 

                    (time2 - time1) / time2 * 100.0); 

        }  

        else { 

            printf("Multiplications faster by %5.2f percent\n", 

                (time1 - time2) / time1 * 100.0); 

        } 

    } 
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Limitations of Benchmarking 

Benchmarking of C++ using these timing methods is not perfect, but I’ve always 
found it useful. There are various reasons why this type of benchmarking timing 
results may not be fully correct. 

• Hard to account for parallelism (e.g., GPU throughput) 

• Single-threaded code is not always a true representation. 

• Pipelining speedups often differ in production code (even for sequential 
CPU code, such as AVX intrinsics). 

• Loop overhead is hard to separate from the raw operations (as seen above!) 

• Compiler optimizations might modify or even remove the operations being 
benchmarked. 

• Memory cache hit rates are too high because you’re running tight code 
accessing only a few addresses. 

• Optimization levels in test mode might not match your production version. 

• Debug modes might not match production (e.g., if running in a debugger). 

• Pipelining by the CPU of many instructions makes it appear better than 
reality. 

• Unrealistic non-production conditions are being tested. 

Compiler optimizations. In this day and age of amazing optimization algorithms, 
note that on some platforms the benchmarking code above may indicate that shifts 
and multiplications cost exactly the same. This is most likely an indication that the 
compiler automatically optimizes any multiplications by powers of two into left 
shifts.  

To get the true cost of a multiplication, the expression should be: 

    x = x * x; 

But even this might be optimized algebraically by a compiler. The only way to know 
for sure what’s actually being benchmarked is to examine the assembly language. 
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Examining Assembly Output 

Another way of examining the relative costs of particular operations for a particular 
compiler is to examine the assembly language produced by the compiler. Many 
compilers have an option to produce assembly language output. For example, under 
Linux the command may be: 

    gcc -S main.cpp 

This will produce the assembly language listing for the C++ source file and store it 
in a new file “main.s” as a human-readable text file. Without the -S option, the 
assembly output would have been passed to the assembler to create the machine 
code executable. GCC also has a “-masm” option that controls the different 
“dialects” of assembly language (e.g., “intel” or “att”). GCC also has a verbosity 
control on assembly output via “-fverbose-asm” and “-fno-verbose-asm” 
options. 

Another way to generate assembly with GCC is the “-save-temps” option. This 
option tells GCC to save the temporary assembly language file that it used for the 
real compilation. Hence, this option can be used with the normal compilation mode 
to both build the code as normal and also output a “.s” assembly file. The 
advantage of this GCC “-save-temps” option over “-S” is that you don’t need 
to create a separate build path for generating assembly text files. 

Reviewing assembly code. Examining assembly language instructions produced 
for C++ operations can be very enlightening. For example, you can determine 
whether the compiler uses a special increment instruction for the ++ operator. 
Whether or not the compiler is performing various optimizations can also be 
examined. 

Counting the number of assembly instructions is a simple measure and gives a 
reasonable indication of how efficiently an operation will be performed. A better 
method is to determine the number of cycles used by each instruction, but this 
requires a rather more intimate knowledge of the assembly language being used. 

Many useful things can be discovered by examining assembly output. For example, 
does the expression x*2 generate a multiply instruction or a shift instruction (or an 
addition instruction to do “x+x”)? Does the compiler notice that x=x+1 can be 
replaced by x++? Is the integer % remainder operator implemented by a sequence 
of instructions? 
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Consider the use of the relational operators (e.g., >, <) in expressions such as: 

    flag = x > y; 

This will often produce a sequence of instructions because of the need to assign 
flag the value either 0 or 1. The instructions may well look like the following 
pseudo-assembly language: 

    LOAD 10($sp) # Load x (from stack) 

    CMP 12($sp) # Compare with y (on stack) 

    BGT $1 # Branch if greater than 

    LOAD 0 # Result of > operation is 0 

    JUMP $2 

    $1: 

    LOAD 1 # Result of > operation is 1 

    $2: 

    STORE 14($sp) # Store in flag (on stack) 

However, review the assembler for the similar test in if statements, such as: 

    if (x > y) ... 

For an if statement, the instructions need not be as complex, because there is no 
need to store the value 0 or 1 anywhere. The assembly language could be similar to 
branches without computations: 

    LOAD 10($sp) # Load x (from stack) 

    CMP 12($sp) # Compare with y (on stack) 

    BLE $1 # Branch if NOT greater than 

    ... # Code for if statement body 

    $1: 

    ... # Statements after if statement 

Examining Object Files 

The objdump command is another useful tool on Linux for analyzing binary object 
files. DUMPBIN is the comparable tool on Windows for MSVS (or you can use 
the LINK command with the “/DUMP” option). These tools can get to the assembly 
language text in reverse, by disassembling the binary instructions that are in the 
object file, in combination with the various symbolic information. 

objdump can be used to examine object files in various ways and there are various 
useful options. The “-d” and “-D” options provide disassembly where you can 
examine a full dump of the assembly code in printable form (as an alternative path 



David Spuler                                               106 
 

to the “-S” option). The “-h” option shows the headers of the object file and “-
g” shows debugging information in the file. There are numerous other options and 
the “--help” option can be used to list all options. The objdump command is 
part of Gnu Binutils, which also includes other useful binary file tools such 
as nm, size, strip, and strings utilities. 

DUMPBIN also has various options that can be used on the DOS command-line. 
The default is “/SUMMARY” for a summary of the information about the object file. 
The “/DISASM” command shows the disassembly of the object file, which is in 
assembly language. Also useful is “/SYMBOLS” to show the symbolic names. 

Performance Tuning Practices 

How should the huge number of methods of improving program efficiency be 
applied to a program? The code transformations that improve the program by a 
significant amount should be tried first, and the smaller optimizations used only 
when it is important to squeeze out that last bit of extra speed in bottlenecks. 
Hence, I suggest the following steps for improving the efficiency of a program: 

1. Time your program to get a baseline (i.e., run a full inference query). 

2. Invoke the C++ compiler’s built-in optimizer. 

3. Profile the code and find the “hot spots.” 

4. Consider a better data structure or algorithm. 

5. Use the major code transformations. 

6. Use smaller code transformations, if speed is crucial. 

The first step is to measure your code’s time cost. Otherwise, how will you know 
whether anything made it better? 

The next step is easy: turn on your optimizer. All modern C++ compilers have an 
option to invoke an optimizer on the code. The optimizer, although it may not 
always yield a major increase in speed, has one very important advantage — the 
programmer need not change the code. Hence, if a small improvement is desired, 
the optimizer can often provide it without much effort. 
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Software tuning. Assuming you’re done with all the non-code changes to the 
system (e.g., hardware, networking), it’s time to examine the C++. You can either 
start high by looking at the data structures, or start low by optimizing the busiest 
low-level kernels. 

The choice of a better algorithm (usually with different data structures) for a 
program is not an easy method of program improvement. Simply identifying what 
would be a better algorithm is a difficult problem! And once identified, the new 
algorithm must be implemented by the programmer, costing precious man hours. 
However, this is the best method to achieve an order-of-magnitude increase in the 
program’s performance. 

The next step is to profile in detail the C++ code to determine which functions (or 
statements) are accounting for most of the program’s time; these are the “hot spots” 
of the program. This identification of costly statements is best achieved by a 
profiler, although if I had to take a guess, I’d say look at your vector dot product 
code. Identifying frequently called functions and deeply nested loops is often 
adequate.  

Once the hot spots are identified, all efficiency measures, large and small, should 
be applied to this code. Any improvement to the efficiency of a statement, no 
matter how small, will improve the overall efficiency greatly if that statement is 
executed often. 

Once the most costly functions and loops have been optimized, other statements 
can also be optimized, although the increase in speed will not be as noticeable. Some 
of the better code transformations to apply are parallelization, loop optimizations 
(vectorizations), using pass-by-reference for passing structures or objects to 
functions, and replacing small functions with macros or inline functions. 

Make it right first? The speed improvement techniques in C++ can be applied 
either as the programmer is writing the code, or after the development and 
debugging of the program. The second approach is often referred to as the “make 
it right first” rule. However, I believe that the first method is preferable simply 
because optimizing your program once it is working is a dangerous practice, and 
often introduces new bugs.  

Deferring efficiency improvement to the final development stage can also waste 
programmer time in improving the basic algorithms used in a program. Using 
efficiency techniques during the development of the program is a much sounder 
method of improving efficiency. 
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Tuning Trade-offs 

Tuning a program is not always a clear-cut gain. There are numerous other 
quantities that efficiency may affect: 

• Space versus time-efficiency. 

• Robustness of a program. 

• Readability and maintainability of a program. 

• Portability of a program. 

There is almost always a trade-off between time and space when making programs 
run faster. Many of the algorithm improvements sacrifice space for extra speed, 
such as caching and precalculation. An often overlooked trade-off is between 
program efficiency and a programmer’s time in making the changes. 

Changing a program for efficiency can introduce extra bugs into a program 
(although you could argue that it might remove bugs, too). If a piece of code has 
already been debugged, improving its efficiency may not be worth the risk to the 
robustness of a program. 

Many of the program transformations used for efficiency can reduce the readability 
of a program. Naturally, this also makes it more difficult for a program to be 
maintained, and since the major cost in a program’s development cycle is usually 
maintenance, improving efficiency may not be worth it in the long run. 

Perhaps surprisingly, the efficiency of a program can usually be increased 
significantly without affecting portability. There are some efficiency techniques in 
this book, but there are many generic methods that work across all C++ code. 

Almost all of the dangers of improving efficiency are dangers for the programmer. 
On the other hand, the users of a program will be well pleased by extra 
responsiveness, and this alone makes efficiency improvement a worthwhile 
exercise. 
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12. Bitwise Operations 

C++ Bitwise Operators 

Here’s a refresher on the C++ bitwise operators: 

x & y — binary bitwise-AND 

x | y — binary bitwise-OR 

x ^ y — binary bitwise-XOR 

x << y — binary left bitshift 

x >> y — binary right bitshift 

~x — unary bitwise-complement 

Binary literals. Also, a reminder that C++ also supports binary literal constants 
with a “0b” prefix, similar to the hexadecimal “0x” prefix. For example, to 
represent the constant 10 (ten), your C++ code can use: 

    const int ten = 10;     // decimal 

    const int ten = 0xA;    // hexadecimal 

    const int ten = 012;    // octal 

    const int ten = 0b1010; // binary 

Bitwise badness: A few pitfalls in coding C++ bitwise operators should be 
mentioned: 

• Integer-only: the C++ bitwise operators do not work on floating-point 
data types. 

• Quiet overflow: if you do anything to overflow an integer type, nobody’s 
going to tell you. For example, shifting the sign bit too far left with 
“1<<32” instead of “1<<31” will simply lose it. You might get a compiler 
warning, though. 
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• Two is not better than one. The & operator is bitwise, but && is logical. 
Similarly, | and ||. It’s the reverse for < and << or > and >>. Choose the 
wrong one and you might get a compiler warning, if the stars are aligned 
and the wind is blowing easterly. 

• Operator precedence is tricky and not what you’d expect (it’s arguably 
broken, but rather too late to fix), so use lots of parentheses in bitwise 
expressions, and don’t ignore C++ compilation warnings. 

• Bitwise operators are not always well-defined on negative values (e.g., 
bitwise right shift is officially “undefined behavior” on a negative), so it’s 
best to use “unsigned” types as operands to bitwise operators. Note also 
that it’s often useful to add the suffix letter “u” to integer constants 
(e.g., 10u, 0xAu or 0b1010u), when dealing with bitwise operations. This 
makes the constant of type “unsigned” and avoids various bitwise 
operator problems with signed numbers. 

Bitwise operation algebraic properties: The interaction with zero is an 
important difference between the main operations: 

• Bitwise-AND with zero equals zero:   a & 0 == 0 

• Bitwise-OR with zero equals the other value:   a | 0 == a 

The following inequalities for bitwise operators on non-negative integers can also 
be useful to know: 

• Bitwise-AND only clears bits and is <= each operand:   a & b <= a 

• Bitwise-OR only sets bits and is >= each operand:   a | b >= a 

• Bitwise-AND equals the larger value only for equal numbers. 

• Bitwise-OR equals the larger value only for subset bit patterns. 

Addition versus bitwise operations: The relationship between the bitwise 
operators and the integer “+” operator can be useful to understand: 

• Bitwise-AND is <= the sum of its operands:   a & b <= a + b 

• Bitwise-AND equals addition only if both numbers are zero. 

• Bitwise-OR is >= the sum of its operands:   a | b >= a + b 

• Bitwise-OR equals addition only for disjoint bit sets or zeros. 

Note that these relationships are for positive integer values. Bitwise operators need 
positivity in their daily lives, whereas addition is fine with lots of negativity. 
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Bit Flag Basics 

The main use of C++ bitwise operators is to use bit flags in integer variables, which 
is very efficient in both storage space and execution time. A vanilla “int” can store 
32 bit flags, and a “long” can store 64 bits. The basic bit operations in C++ use 
these bitwise operators: 

• Check a bit — bitwise-AND (&) 

• Set a bit — bitwise-OR (|) 

• Toggle a bit — bitwise-XOR (^) 

• Clear a bit — bitwise-AND with complement (& with ~) 

Here are some example macros for examining the bits in a 32-bit integer, which 
should be of “unsigned int” type: 

    // Bit Flags in Integers 

    #define AUSSIE_ONE_BIT_SET(x, b)   \ 

      (( ((unsigned)(x)) & ((unsigned)(b))) != 0 ) 

    #define AUSSIE_ANY_BITS_SET(x, b) \ 

      (( ((unsigned)(x)) & ((unsigned)(b))) != 0 ) 

    #define AUSSIE_ALL_BITS_SET(x, b) \ 

      ((((unsigned)(x))&((unsigned)(b))) 

                  == ((unsigned)(b))) 

    #define AUSSIE_NO_BITS_SET(x, b)  \ 

      (( ((unsigned)(x)) & ((unsigned)(b))) == 0 ) 

The corresponding macros to set and clear these bit flags are: 

    #define AUSSIE_SET_BITS(x, b)    \ 

      (( ((unsigned)(x)) | ((unsigned)(b)))) 

    #define AUSSIE_CLEAR_BITS(x, b)  \ 

      (( ((unsigned)(x)) & (~((unsigned)(b))))) 

    #define AUSSIE_TOGGLE_BITS(x, b) \ 

      (( ((unsigned)(x)) ^ ((unsigned)(b)))) 

Yikes! What a mess! But all those parentheses are necessary to avoid precedence 
issues with preprocessor macros. 
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Bit Sets 

You can consider a 32-bit integer to be a “bit set” of 32 distinct bit flags, where all 
1s represent a bit flag that is in the set. A bit set is an inherently parallel architecture, 
even in ordinary sequential C++ code. The basic idea is that a 32-bit unsigned int 
stores 32 bit flags. Certain actions on the integer as a whole effectively process 32 
bits in parallel. For example, it is very fast to check if any bits are set at all by testing 
whether the whole integer is zero. 

In regards to bit sets stored in an integer, the basic set operations can be 
implemented very efficiently with C++ bitwise operators: 

• Bitwise-AND (&) — intersection 

• Bitwise-OR (|) — union 

• Bitwise-complement (~) — set complement (negated set) 

• Bitwise-and-complement (“A&~B”) — set difference (set minus) 

In addition, there are a number of fast operations that can be useful for bit sets: 

• Integer zero — null set of bits. 

• Integer negative-one — full set of all 1s. 

• Bitwise “popcount” — set cardinality or number of elements. 

Example code with these ideas for 32-bit sets implemented as unsigned integers: 

    u != 0         // Test if any bit is set 

    u3 = u2 & u1;  // Intersection of sets (Bitwise-AND) 

    u3 = u2 | u1;  // Union of sets (Bitwise-OR) 

    u3 = u2 ^ u1;  // Toggle bits in sets (Bitwise-XOR) 

    u3 = ~u1;      // Set complement or inverse 

The total number of bits set out of 32 can be computed fast as a “popcount” 
operation using intrinsic functions, such as “__popcnt” in Microsoft Visual Studio 
and “__builtin_popcount” for GCC (there are also versions for 64-bit longs). 
In x86 architectures, popcount is a single CPU instruction (POPCNT) implemented 
in hardware, and is therefore very fast. 

Note that these C++ macros assume type “unsigned int” with 32 bits, and 
therefore 32 distinct bit flags in a single integer variable. For more bits, the 
“unsigned long” type could be used (64-bit), and there is also the “long long” 
type (128-bit). 
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The above macros would need to be changed to use type casts to “unsigned 
long” rather than just “unsigned” for a 64-bit version. For even more bits, a 
data structure called a “bit vector” can be implemented as an array of unsigned 
integers, which generalizes the bit set idea. 

Bitwise Intrinsic Functions 

Intrinsic functions, or “builtin” functions, are special C++ functions that are 
specific to the compiler environment. For example, Microsoft Visual Studio and 
GCC have different builtins. Intrinsics are usually implemented in very efficient 
ways, often directly mapping to CPU instructions, so they can be very powerful 
optimizations. 

Some of the useful builtin functions for integer bitwise arithmetic are listed below. 
Most of these functions are for “int” or “unsigned int” (32-bit), but have 
other versions for long 64-bit or unsigned long 128-bit types. There isn’t 
usually a version for “short” 16-bit integers. 

Count Leading Zeros (CLZ): Various functions count the leading zeros, or 
similarly, the offset of the first set bit. This is scanning the bits from left-to-right 
and finding the most significant bit. One application of the CLZ intrinsic is a fast 
way to compute a truncated log2 of an integer, or similarly, computing the highest 
power-of-two in a number. 

• _BitScanReverse (Microsoft intrinsic <intrin.h>): Finds the most-
significant bit in a 32-bit integer. There’s also _BitScanReverse64. 

• clz: Count leading zeros (various versions); also sometimes called “nlz” 
for “number leading zeros”. 

• __lzcnt: Leading zeros count in Microsoft Windows intrinsics, 
use <intrin.h> for Microsoft Visual Studio C++. 

• __builtin_clz (count leading zeros): GCC function to count the 
number of leading prefix zeros in an unsigned integer. 

• _CountLeadingZeros: Microsoft <intrin.h> ARM intrinsics. 

For all you silicon addicts, here’s the CPU hardware instructions are underpin these 
intrinsics: 

• BSR: Bit Scan Reverse x86 assembler instruction. 

• LZCNT: x86 instruction for leading-zero count, similar to BSR. 
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Count Trailing Zeros (CTZ): Contrasting to the leading zero functions, these 
functions find the zeros on the right-hand-side of an integer. This is the least-
significant bit. 

• _BitScanForward (Microsoft intrinsic <intrin.h>): Finds the least-
significant bit set. Long int version is _BitScanForward64. 

• __builtin_ctz (count trailing zeros): GCC function counts zero bits 
on the right (least-significant bits). 

• ffs/ffsl: Find first set (least-significant bit). 

• __builtin_ffs (find first set): GCC function: find first set bit from the 
least significant bits (from the right bits). 

The related x86 CPU hardware instructions are: 

• BSF: Bit Scan Forward x86 assembler instruction. 

• TZCNT: x86 instruction for trailing-zero count, similar to BSF. 

If you’d rather code it yourself, there’s Brian Kernighan’s bit trick for LSB: bitwise-
and of n and n-1 (i.e., in C++ n&(n-1) finds the lowest set bit). But using the 
intrinsics should be faster. 

Popcount (Set Bits Count): The count of 1s in a number is known as the 
“popcount” (which is short for population count) and there are various intrinsics: 

• __builtin_popcount: GCC function to count the number of 1s in an 
unsigned integer. 

• BitOperations.PopCount: Microsoft intrinsic function for bitwise 
popcount. 

• __popcnt: AMD x86 popcount intrinsic using POPCNT x86 instruction 
(Microsoft platform) 

• _mm_popcnt_u32: Intel x86 popcount intrinsic using POPCNT x86 
instruction (Microsoft platform); use <intrin.h> on MSVS C++. 

• __builtin_parity: GCC function tracking bitwise binary parity 
(whether the number of 1s is odd or even). 

The x86 CPU hardware instruction is POPCNT, which computes the popcount 
faster than a hummingbird’s wings. 
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Example: Integer Popcount 

The “popcount” is short for “population count” of a binary number, and is the 
number of binary 1s in an integer number. This has applications such as quickly 
counting the number of elements in a bit set or bit vector. 

Bitwise arithmetic can be used to check for a '1' value in each bit of an integer. 
Usually an unsigned type is used (as below), but bit twiddling of signed integers is 
also possible.  

This is the slow version in C++ that simply loops through each bit, checking if it is 
set: 

   int aussie_popcount_basic(unsigned int x)  

   { 

        // Count number of 1s 

        const int bitcount = 8 * sizeof(x); 

        int ct = 0; 

        for (int i = 0; i < bitcount; i++) { 

            if (AUSSIE_ONE_BIT_SET(x, 1u << i)) ct++; 

        } 

        return ct; 

   } 

Kernighan Popcount Algorithm: A faster version is to use a bit trick found by 
Brian Kernighan, author of The C Programming Language. For all values of n, the 
previous number n-1 has one less bit set. So, if you do bitwise-AND of n and n-
1, it removes the rightmost bit that is 1 (i.e., least significant bit). Hence, you can 
use this to optimize popcount by only looping as many times as there are 1s in the 
number (rather than always doing 32 iterations).  

Here’s the new C++ code: 

   int aussie_popcount_kernighan(unsigned int x)  

   { 

        // Count number of 1s with Kernighan bit trick 

        int ct = 0; 

        while (x != 0) { 

            x = x & (x - 1); // Remove rightmost 1 bit 

            ct++; 

        } 

        return ct; 

   } 
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Intrinsic Popcount Functions: The Kernighan method is faster, but far from 
optimal. To do it super-fast, we have to look at existing builtin function primitives. 
For example, Microsoft intrinsics include “__popcnt” or “_mm_popcnt_u32” 
intrinsic functions (in header file <intrin.h>) and the GCC library has a 
“__builtin_popcount” function, which count the number of 1s in an unsigned 
integer. On x86 CPUs, the underlying intrinsics should be using the x86 assembler 
instruction named POPCNT. Here is some example C++ code that works for 
Microsoft Visual Studio: 

    int aussie_popcount_intrinsics2(unsigned int x) 

    { 

        return __popcnt(x);  // Microsoft intrinsics 

    } 

Obviously, a faster version is to declare this one-line function as “inline” in a 
header file, or to convert to a C++ preprocessor macro, such as: 

    #define AUSSIE_POPCOUNT(x) (__popcnt((unsigned)(x))) 

Example: Bitwise Log2 on Integers 

Calculating the base-two logarithm of integers can be quite useful. There are various 
algorithms that use logarithms in AI. 

Let’s calculate the integer logarithm of an integer. This means we aren’t doing the 
proper fractional logarithm of a number, but we are truncating it down to the 
nearest integer. For example, log2(7) will be truncated to 2, rather than 2.807. 
Note that we’re assuming the input is unsigned numbers, since logarithms of 
negatives are undefined. Also, we have to decide how to handle zero, 
because log2(0) is undefined (or negative infinity if you prefer). 

A simple way to implement a truncated integer log2 function is to use floating-
point functions and type casts back to int: 

    int aussie_log2_integer_slow(unsigned int u)   

    { 

        // Slow float-to-int version 

        return (int)log2f(u); 

    } 

This works, but it’s inefficient to use floating-point arithmetic on integers. Surely 
there’s a faster way? 
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After some thoughts about binary bits, we notice that log2 of an integer is just the 
index position of the highest bit in a number. The log2 of 1 is 0, because the '1' is 
in position 0. The log2 of 2 (binary 10) is 1 because the leftmost 1 is in position 
1. The log2 of 4 (binary 100) is 2, where the 1 is in index 2. The number 7 is 
binary 111, so log2 is the position of the leftmost 1, which is position 2. 
So, log2(7) is the same as log2(4), but log2(8) is 3. 

There are numerous builtin bitwise functions that can find the leftmost set bit. With 
sudden insight, we note that we can use “CLZ” (count leading zeros) to compute 
how many prefix zeros there are before the leftmost 1 bit (i.e., counts the zeros up 
to the most-significant bit from the left). We can then compute the bit index 
position from the right in a 32-bit integer as “32-CLZ”. It’s on the right track, and 
a bit of testing shows that the formula to use is “32-CLZ-1”. 

Here’s some example code that uses this CLZ method to compute log2 of an 
integer. This works on Microsoft Visual Studio using the <intrin.h> header file 
to declare intrinsics. 

    int aussie_log2_integer_clz_intrinsic(unsigned u)  

    { 

        // LOG2 using CLZ 

        int clz = __lzcnt(u);  // Count leading zeros 

        const int bits = 8 * sizeof(u); 

        return bits - clz - 1; 

    } 

And here’s the macro version for those who don’t trust compilers to inline properly: 

    #define AUSSIE_LOG2_LZCNT(u) \ 

    ((8 * sizeof(unsigned)) - (__lzcnt((unsigned)(u)))-1) 

And this is actually not optimal. We really should help the C++ optimizer by 
reordering this to move the “-1” subtraction operation next to the other constant, 
noting that “sizeof” is a compile-time constant expression in C++. Putting them 
together would make sure that the compiler correctly merges these operations using 
constant folding. On x86 implementations, the CLZ builtin functions are 
presumably using the x86 LZCNT or BSR assembler instructions, which are both 
similar and fast. 

Bug alert! Note that you can’t use “ffs” (find first set bit) for this log2 method, 
because it gives you the offset of the least-significant set bit (i.e., the rightmost bit 
rather than the leftmost bit). The other x86 instructions of TZCNT (Trailing Zeros 
Count) and BSF (Bit Scan Forward) are also incorrect. 
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Example: Highest Integer Power-of-Two 

Another simple trick related to the log2 calculation is to truncate a number to its 
largest power-of-2. This is equivalent to the value of its leftmost bit in binary 
representation. 

For example, 8 (binary 1000) stays as 8, because it’s 2^3, but 7 (binary 111) 
reduces down to 4 (binary 100), which is 2^2. As with the truncated 
integer log2 calculation, this method focuses on computing the leftmost 1 bit, 
which is known as the Most-Significant Bit (MSB). 

Whereas the log2 calculation found the index position of that MSB, this power-
of-two calculation requires the value of the MSB. In other words, we need to find 
the bit that is the MSB, and then keep only that bit. A simple way to do this is to 
compute the log2 of the integer efficiently, and then left-shift a 1 by that many 
places (using unsigned type). The basic idea is: 

   int bitoffset = log2_integer_fast(i); 

   int highestpowerof2 = 1u << bitoffset; 

Note that this doesn’t handle cases like zero, so it still needs a bit of extra code 
polishing work. 

Integer Overflow and Underflow 

Integer arithmetic overflow and underflow have traditionally been ignored in C++ 
programs, mostly by assuming that operations won’t exceed the range of 32-bit 
integers. Most platforms don’t fail on integer overflow, and quietly continue, 
without even triggering a signal like SIGFPE (floating-point error). 

The absence of runtime warnings can potentially leave insidious bugs in your code, 
and is also an undefended attack vector for security. Also, perhaps ignoring 
overflow isn’t the best strategy. 

Integers have a fixed range of numbers that they can represent. For example, a 
signed 16-bit integer represents the relatively small range of -32,768 to +32,767, 
and an unsigned 16-bit number can be from 0 to 65,535. A 32-bit signed integer 
has a much bigger range from about negative 2 billion (–2,147,483,648) to 
about positive 2 billion (+2,147,483,647). For an unsigned 32-bit integer, 
there’s no negatives, and the range is from zero up to about 4 billion 
(+4,294,967,295).  
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Feel free to memorize those numbers, as you’ll be needing them at least once a 
decade. The ranges for 64-bit integers are massive numbers around 2^64, which is 
approximately decimal 10^19. 

If integer arithmetic on a data type falls outside the range supported by that integer 
type, then an overflow or underflow occurs. There are symbolic constants for the 
minimum and maximum numbers for many types declared in 
the <limits.h> standard header file. 

• int — INT_MAX and INT_MIN 

• unsigned int — UINT_MAX and UINT_MIN 

The effect of integer overflow or underflow is platform-specific, but on most 
platforms, it is usually: nothing! It’s a silent insidious bug in many cases. For a signed 
integer, overflow quietly wraps around from positive to negative, and underflow 
does the reverse. 

Here’s an example of overflow of an int type: 

    int x = INT_MAX; 

    assert(x >= 0); 

    ++x;  // Overflow! 

    assert(x < 0); 

And this is underflow of int: 

    int x = INT_MIN; 

    assert(x < 0); 

    --x;  // Underflow! 

    assert(x > 0); 

Floating-point types can represent much larger magnitude numbers than integers. 
Hence, another way for an integer to overflow is in a conversion from floating-
point numbers. 

    float f = (float)INT_MAX * (float)INT_MAX; // Fine! 

    int x = (float)f;  // Overflow! 

For an unsigned integer, the results are a little different, since negatives are not 
possible. Instead, overflow wraps around from a large number to zero, and 
underflow (going below zero) wraps around to the largest unsigned number. 
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Preventing Integer Arithmetic Overflow. There’s not really a good way to detect 
arithmetic overflow or underflow before it happens. Post-testing is easier. 

For example, GCC and Clang have some intrinsics, such as 
“__builtin_add_overflow” for addition, which use post-testing of the x86 
CPU overflow or carry flags for detecting integer overflow, and return a Boolean 
flag which you can use. The GCC documentation say it uses “conditional jump on 
overflow after addition” and “conditional jump on carry” for unsigned overflow. 
Here’s an example: 

   if (__builtin_add_overflow(x, y, &z)) { 

       // Overflow! 

   } 

The mainstream prevention strategy is simply to choose a big integer type (at least 
32-bit) and then hope that no outliers occur in your input data. Most programmers 
let the overflow occur and then check. Or rather, just between you and me, most 
programmers simply don’t even check at all! 

Technically, integer overflow is “undefined behavior” on C++, and it’s certainly 
non-portable, so you really should check. But most platforms handle it the same 
way, by quietly wrapping the integers around in two’s complement form. 

Increment overflow. For incrementing integers, you can do a pre-test like: 

    if (INT_MAX == x) { 

        // Overflow! 

    } 

    else { 

        x++;  // Safe increment 

    } 

Addition overflow. And here’s a version to pre-test addition of two positive 
integers for overflow: 

    if (x > INT_MAX - y ) {  // x + y > INT_MAX 

        // Overflow! 

    } 

    else { 

        x += y;  // Add safely 

    } 
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Multiplication overflow. The test for multiplication overflow is even worse 
because it uses division: 

    if (x > INT_MAX / y ) {  // x * y > INT_MAX 

        // Overflow! 

    } 

    else { 

        x *= y;  // Multiply safely 

    } 

Head in the sand approach. Unfortunately, pre-testing for overflow is massively 
inefficient, as shown above. Do you really want to do this for every addition or 
increment? Even post-testing for overflow isn’t much better. Overall, there’s good 
reason why most C++ programmers just skip it, and hope for the best. 

Overflow management. The alternative to ignoring the problem is to consider 
various different risk mitigation strategies for integer overflow: 

• Larger data types (e.g., long) for a larger range. 

• Use floating-point types instead. 

• Use unsigned type for non-negative variables (e.g., sizes, counts). 

• Use size_t for the unsigned variable type (it’s standardized). 

• Enable compiler runtime checks (when debugging/testing) 

• Range checking input numbers (e.g., model weights). 

• Post-testing the sign of arithmetic results. 

• GCC and Clang intrinsic functions with overflow testing. 

• The <stdckdint.h> header file in C23 (that’s the C standard, not 
C++23). 

• Safe integer class wrappers. 

Runtime overflow detection. Some C++ compilers provide limited support for 
runtime error checking of arithmetic. The x86 CPU has builtin overflow detection, 
with a quietly-set overflow flag and a carry flag, which some C++ compiler-writers 
have made use of. 

GCC has an “-ftrapv” option which elevates overflow errors (presumably by 
using post-checking). GCC has defined a number of C++ intrinsic functions which 
you can use to perform overflow-safe integer arithmetic, such as: 

• __builtin_add_overflow — addition 

• __builtin_mul_overflow — multiplication 
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Microsoft Visual Studio C++ provides the “/RTC” option, which stands for “Run-
Time Checks”, or there’s “Basic Runtime Checks” in the MSVS IDE Project 
Settings. However, these MSVS features don’t check much for arithmetic overflow, 
with a focus on stack frame checking and uninitialized variables. The closest is 
“/RTCc” to detect data type truncations at runtime. 

There’s also a runtime debugging tool that focuses on integer overflow and other 
oddities. It’s named “Undefined Behavior Sanitizer” or UBSAN for short. It works 
like Valgrind, by adding runtime instrumentation code. 

Safe integer classes. Currently there’s no standard safe integer types in C++, but 
adding them was unsuccessfully proposed in 2016. If you like a busy CPU, and what 
programmer doesn’t, you can replace all int variables with “safe integer” class 
objects, with many examples of such classes available on the Internet.  

They’re probably not as bad as I’ve implied, since C++ inlining should make the 
critical path quite short. 

Missing Bitwise Operators: NAND, NOR, 

XNOR 

Note that there’s no simple operator for NOR, NAND or XNOR in C++. And 
you might need them, since neural networks uses these uncommon bitwise 
operations more than normal C++ coding. For example, XNOR is needed as the 
vector dot product operator for binarized bit vectors, such as in binary quantization 
and also XNOR neural networks. 

These missing operators can be easily simulated using two C++ bitwise operations, 
with a binary bitwise operation and the “~” bitwise two’s complement unary 
operator afterwards. 

    NAND(x,y) = ~(x & y) 

    NOR(x,y)  = ~(x | y) 

    XNOR(x,y) = ~(x ^ y) 

So, you can just code this as fast C++ macros, right? 

    #define NAND(x,y) ~(x & y)  // Bug alert! 

    #define NOR(x,y)  ~(x | y) 

    #define XNOR(x,y) ~(x ^ y) 
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No, this is broken in about half a dozen ways. To write macros correctly, you need 
to ensure there’s parentheses around the whole expression, and also around each 
parameter name, to avoid getting bitten by C++ macro expansion operator 
precedence problems. And these macros also don’t work correctly if you pass in a 
non-unsigned integer. 

Here’s some example C++ macros that work for 32-bits: 

    #define AUSSIE_BITWISE_NAND(x,y) \ 

      (~(((unsigned)(x)) & ((unsigned)(y)))) 

    #define AUSSIE_BITWISE_NOR(x,y)  \ 

      (~(((unsigned)(x)) | ((unsigned)(y)))) 

    #define AUSSIE_BITWISE_XNOR(x,y) \ 

      (~(((unsigned)(x)) ^ ((unsigned)(y)))) 

You could also declare these macros as “inline” functions if you prefer. Note 
that these macros have a lot of parentheses to avoid various insidious precedence 
errors, and they also are limited to 32-bit operations. For 64-bit, you’d need to create 
alternative “unsigned long” versions. 

These NAND/NOR/XNOR macros are convenient, but not very efficient since 
they perform two arithmetic operations. Single-operation versions are available in 
assembler if you really need them, accessible via C++ builtin intrinsic functions 
such as: 

• _kxnor — x86 intrinsic for XNOR bitwise operation. 

• KXNORW/KXNORB/KXNORQ/KXNORD — x86 assembler bitwise XNOR 
operations. 

• VPTESTNMB/VPTESTNMW/VPTESTNMD/VPTESTNMQ — x86 assembler 
bitwise NAND operations. 

Note for the sake of completeness that there are more weird bitwise operators that 
do different things on a pair of bits. There are four input combinations and 
therefore 16 possible binary operator functions. There are three C++ bitwise 
operators (AND/OR/XOR), plus the three extra ones coded above 
(NAND/NOR/XNOR), two trivial always-zero and always-one operations, two 
copy-operand functions, and six other ones that are equivalent to variations with 
negated operands (e.g., “x&~y” is one).  

I’m not sure why you needed to know that. 
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Bitwise AI Applications 

Bitwise operations are a well-known coding trick that has been applied to neural 
network optimization. Bitwise-shifts can be equivalent to multiplication and 
division, but faster. Other bitwise operators can also be used in various ways in 
inference algorithms.  

Some of the common uses of bitwise operators in AI engines include: 

• Arithmetic computation speedups: Bit tricks are used in optimizations 
of multiplication operations with bitshifts, and also faster approximate 
arithmetic methods. 

• Sign bit manipulation: Various optimizations are possible by direct 
bitwise operations on the sign bit of integers or floating-point numbers. 
For example, the RELU activation function tests for negatives, which are 
changed to zero, but positive values are unchanged. This can be 
implemented efficiently as a sign bit test. 

• floating-point bit operations: The bits of the numeric representations of 
IEEE 754 floating-point numbers, or the Google bfloat16 type, include 
a sign bit, an exponent, and a mantissa. Normal bitwise arithmetic 
operators cannot be applied to floating-point numbers, because the C++ 
bitwise and bitshift operators only work on integer types. However, 
floating-point numbers are really just integers underneath, so there are 
various tricky ways that bitwise operators can be used on the underlying 
IEEE standard bit representations that are used by floating-point numbers. 
This is discussed in the next chapter on floating-point optimizations. 

• Look-up Tables: Algorithms that use table lookups for speed 
improvement typically involve bitwise shifts in computing the table offset. 

• Data structures: Some data structures used in optimization of neural 
networks that involve bits include hashing and Bloom filters. 

Bits of AI Research: Some of the advanced areas where bitwise optimizations 
have been used in neural network research include: 

• Power-of-two quantization (bitshift quantization): By quantizing 
weights to the nearest integer power-of-two, bitwise shifts can replace 
multiplication. 

• Bitserial Operations: Bitserial operations are bitwise operations on all of 
the bits of an integer or bit vector. For example, the “popcount” operation 
counts how many 1s are set in the bits of an unsigned integer. The bitserial 
operations can be useful in neural network inference for computing the 
vector dot products in binary quantization or 2-bit quantization. 
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• Advanced number system division: See dyadic numbers and dyadic 
quantization for an obscure number system involving power-of-two 
division, which can be implemented as bitwise right-shifting. 

• Low-bit integer quantization: When quantized to only a few bits, 
inference can use bitwise arithmetic and bitserial operations to replace 
multiply-accumulate. The main examples are binary quantization and 
ternary quantization, both of which avoid integer multiplications in favor 
of bitwise operations (or addition) and sign bit handling. 

• Shift-add networks: Multiply-and-add (or “multiply-accumulate”) can be 
replaced with bitshift-and-add. 

• Bit arithmetic neural networks. These are neural networks where the 
neurons operate as bitwise operations. For example, see Weightless Neural 
Networks (WNNs). 

• XNOR Networks: XNOR neural networks are similar to binarized 
networks. Their internal operations rely on the bitwise XNOR operation. 
The idea is that XNOR is actually an implementation of the multiplication 
operation on binary values.  

XNOR is an uncommonly used bitwise operation, and there’s no builtin C++ 
operator for binary XNOR. However, there is always hardware XNOR 
support, such as a 64-bit XNOR instruction in the x86 CPU instruction set. 

References on Bitwise Operations 

If I’ve whetted your appetite for bit fiddling magic, there’s plenty more: 

1. Sean Eron Anderson (2005), Bit Twiddling Hacks, Stanford 
University, https://graphics.stanford.edu/~seander/bithacks.html 

2. Ian Brayoni (2020), https://github.com/ianbrayoni/bithacks (Python 
code inspired by Sean Eron Anderson’s Bit Twiddling Hacks.) 

3. Henry S Warren (2012), Hacker’s Delight, 2nd Edition, Addison-Wesley 
Professional, https://www.amazon.com/Hackers-Delight-2nd-Henry-
Warren/dp/0321842685 Code: https://github.com/hcs0/Hackers-
Delight 

4. Antonio Gulli (2014), A Collection of Bit Programming Interview Questions solved 
in C++ Kindle Edition, https://www.amazon.com.au/Collection-
Programming-Interview-Questions-solved-ebook/dp/B00KIIDPUG/ 

5. Jörg Arndt (2010), Matters Computational: Ideas, Algorithms, Source 
Code, https://dl.acm.org/doi/10.5555/1941953, https://www.jjj.de/fxt/f
xtpage.html#fxtbook, 
Code: https://www.jjj.de/bitwizardry/bitwizardrypage.html 
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13. Floating-Point Arithmetic 

What are Floating-Point Numbers? 

Floating-point numbers are typically stored in 32 bits for single-precision C++ 
“float” types, and it’s actually a 32-bit integer behind the scenes. The main 
floating-point types that you already know from C++ programming are: 

• Single-precision floating-point — 32-bit float (FP32) 

• Double-precision floating-point — 64-bit double (FP64) 

The smaller 16-bit floating-point numbers that are never used in everyday C++ 
coding, but are important for AI, include: 

• Half-precision IEEE type — 16-bit “short float” (FP16) 

• Half-precision Bfloat16 type — 16-bit “Brain float” (BF16) 

If only there was really a “short float” type in C++. The BF16 type is the non-
IEEE 16-bit float version from Google Brain. Note that there is new standardized 
support for these 16-bit types in C++23. 

Which type of floating-point number should you use? That’s when things get tricky, 
because there are many wrinkles in the choice between 32-bit and 16-bit floating-
point. It’s not always clear which floating-point size is the best to use. FP32 is the 
most common size used in basic Transformer inference, but FP16 is a good choice 
for quantization of models, because they are compressed to half the size and retain 
good accuracy. And BF16 has been very effective in terms of GPU-accelerated 
algorithms. 

Some hardware accelerators support different formats and sizes for their parallel 
operations. And there are various software problems with portably coding 16-bit 
floating-point data types in C++, along with variable hardware support for 16-bit 
operations across platforms. 
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Less importantly, there are also some other floating-point sizes, both bigger and 
smaller: 

• Quarter-precision type — 8-bit floating-point (FP8) 

• Quadruple-precision type — 128-bit “quad” floating-point (FP128) 

FP8 is mainly seen in research papers, and hasn’t really caught on for quantization 
(8-bit integers are typically used instead). The bigger sizes FP64 and FP128 aren’t 
really needed to make your model work accurately, so their significant extra cost in 
speed and size isn’t worthwhile for only a small perplexity gain in most use cases. 

Bit Representations of Floating-Point 

Numbers 

Standardized bit patterns are used to represent floating-point numbers in a kind of 
scientific notation. There are three types of bits: 

• Sign bit 

• Exponent bits 

• Mantissa bits 

Firstly, there’s one bit for the sign, indicating whether the whole number is positive 
or negative. Then the remaining bits are split up between the “exponent” (i.e., the 
“power”), and the “mantissa” (also called the “digits” or the “significand” or the 
“fraction”). In a standard 32-bit “float” type used in AI, there is: 

• 1 sign bit 

• 8 exponent bits 

• 23 mantissa bits 

How does that even make a number? Well, it’s like scientific notation, if you are 
familiar with that. The exponent is the power and the mantissa is the digits. 

Let’s pretend computers use decimal digits. If it were in base 10 storage, the decimal 
number 1234 would be stored as: 

• “0” for the sign bit — because non-negative. 

• “3” in the exponent — the power is 10^3=1000. 

• “1234” as the mantissa — the digits make the fraction “1.234”. 
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This would represent +1.234x10^3 (which hopefully equals 1234). That’s how 
it would work for a decimal version. 

But, as you know, silicon beasts are not decimal. A floating-point number is actually 
stored in binary, in a kind of base-two “binary scientific notation” numbering 
scheme. So, conceptually, 1234 would be stored as a power-of-two exponent that 
represents the largest power-of-two, which would be 1024, because 2^10=1024, 
so the exponent has to store power “10” (ten), which is 1010 in binary. And 
the 1234 would be converted to whatever the heck 1234/1024 is when you 
represent that in binary 0’s and 1's, and remove the decimal point (which is 
implicitly “floating,” you see?). 

It’s more complicated than this, of course. That’s what standards are for! The 
exponent bits are actually stored with an “offset” number (also called a “bias”), 
which differs by the size of the exponent bits. And there also some special bit 
patterns for particular numbers, such as zero or “NaN” (not-a-number). 

Clear as mud? Don’t you wish someone could go back in time and invent a base-
10 computer? 

Standardized Bit Representations 

There’s nothing magical about the choices of how many exponent versus mantissa 
bits. In the early days, there were many variations, but then they were mostly 
standardized by the IEEE 754 standard. 

32-bit Floating-Point Numbers: The most common type of floating-point is 32-
bits, such as the C++ “float” type. Other than the sign bit, there are usually 31 
bits to split between the two other types, and the standard method is: 

• Standard FP32 (IEEE754). Usually a “float” in C++, or “single 
precision” number. Standard 32-bit floating-point is represented in binary 
as: 1 sign bit, 8 exponent bits, and 23 mantissa bits (plus an implied prefix 
'1' mantissa bit that isn’t actually stored, so it’s really 24 bits of mantissa 
values). The exponent is stored with offset 127. 

16-bit floating-point Numbers: With the “half” float types, there are 16 bits. 
There are a few common representations of floating-point numbers in different 
numbers of bits.  
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The main ones are: 

• Half-precision (FP16). This is the standard 16-bit floating-point number, 
also sometimes called “float16”. Annoyingly, there no standard “short 
float” or other widely used predefined type in C++, although the C++23 
standard adds one, so this may be changing soon. The most common 
IEEE754-standardized version of FP16 type uses 1 sign bit, 5 exponent 
bits, and 10 stored mantissa bits (plus implicit mantissa bit makes 11 bits). 
The exponent is stored with offset 15. 

• Bfloat16 (brain float 16 or BF16): This is a different 16-bit floating-point 
numeric format, originally proposed by the Google Brain division, 
specifically for use in AI applications. Bfloat16 has 1 sign bit, 8 
exponent bits and offset 127 (like FP32), and 8 mantissa bits (7 stored, 1 
implicit). It is like FP32 but with the two lowermost bytes just thrown away, 
so conversion between bfloat16 and FP32 is simpler than converting 
from FP32 to FP16. 

8-bit Floating-Point (FP8). The use of FP8 mainly appears in quantization 
research papers, but its usage is increasing within industry. There is usually 1 sign 
bit, 4 exponent bits, and 3 mantissa bits (which makes 4 bits with an implied extra 
mantissa bit). The other type of FP8 is 1 sign bit, 5 exponent bits, and 2 stored 
mantissa bits (3 bits total). Interestingly, the NVIDIA H100 GPU supports both of 
these FP8 formats. 

FP16 Problems in C++ 

I already mentioned how there’s not a standard half-precision type in C++, 
although that is fixable in the future, once compilers have implemented the C++23 
standard. Here are some of the attempts at a 16-bit type: 

• __fp16 — only supported by ARM architecture. 

• _Float16 — not portably supported. 

• short float — doesn’t seem to exist (I’m just wishful-thinking!). 

• std::float16_t — defined in the C++23 standard. 

• std::bfloat16_t — defined in the C++23 standard. 

So, as of writing, if you want to code a 16-bit float in a portable way with C++, 
there’s an ugly hack: short int. 

A less fixable obstacle is that converting between FP32 and FP16 is not easy 
because their exponent bit sizes are different. So, it’s fiddly to code, and not very 
efficient. 
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The alternative idea is to use “bfloat16” (BF16), which is the upper-most two 
bytes of FP32. Converting is just a bitshift 16 places or playing with bytes, so it’s 
faster than FP16. 

However, BF16 isn’t high precision. With 8 mantissa bits (7 stored, 1 implicit), that’s 
only about 3 decimal digits, because 8/3.3=3, and 3.3 is log2(10), in case you 
were wondering. But it’s not much worse than FP16, which is only about 4 decimal 
digits using 11 binary mantissa bits. 

Representing Zero 

The sign bit, exponent, and mantissa can represent a lot of numbers, but not zero. 
We cannot just set all the mantissa bits to zero, because that’s not zero, which is 
rather strange. 

There’s an implicit extra “1” bit so all the mantissa bits clear isn’t 0.0000, 
it’s 1.0000. It always starts with a “1” and there’s literally no way to 
represent 0.0000. 

Also, the exponent can represent -127 to +128, but setting the exponent to 0 also 
isn’t zero, because 2^0 is 1. And 2^-127 is very small and does get us very close 
to zero, but it’s also not zero. With sudden horrifying insight, we realize: 

There’s no way to represent zero! 

The solution is that the IEEE 754 standard designers decided to treat all bits zero 
as being really zero. All bits zero in the exponent is 0, but then subtracting 
the 127 offset, means that it is -127 (the smallest number). So, if we clear all the 
exponent and mantissa bits to zeros, the number should be 1.0x2^-127, but we 
can all pretend it’s actually zero. Then we can do some pretend coding, ahem, I 
mean microcoding, so that all our Floating-Point Units (FPUs) pretend it’s zero, too. 

Negative zero. Weirdly, there are two zeros: normal zero and negative zero. The 
IEEE 754 standard allows two different bit patterns to mean zero, depending on 
the sign bit. If we clear all the exponent and mantissa to zero, then the sign bit zero 
means zero, but the sign bit set to “1” means “negative zero”. 

I’m not really sure what negative zero even means! But sometimes when you work 
with floats, a 0.000 number will get printed with a “-” in front of it. Maybe it’s 
negative zero, or maybe it’s a tiny negative number with hidden digits at the 15th 
decimal place. 
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Fortunately, most of the arithmetic operations treat negative zero the same as zero. 
The C++ compiler handles it automatically. Adding negative zero does nothing, 
and multiplying by negative zero is also zero. But one of the gotcha’s if you’re being 
tricky with the bits of a 32-bit floating-point number, by pretending it’s a 32-bit 
integer: testing for zero isn’t one integer comparison, it’s two! 

Representing Special Numbers 

We’ve already discussed how zero is handled specially, and has a wonderful 
dichotomy. The full list of special floating-point numbers is: 

• Zero 

• Negative zero 

• +Inf (positive infinity) 

• -Inf (negative infinity) 

• NaN (Not a Number) 

• Denormalized numbers (subnormal numbers) 

Whereas zero is represented by the exponent being all 0s, the special 
numbers Inf and NaN are represented by the exponent with all 1s. So, this means 
that the huge number 2^+128 is not actually represented, but reserved for these 
special values. And honestly, that’s fine, because if 2^+128 isn’t infinity, then I 
don’t know what it is. 

Infinity: Inf is represented by all 1s in the exponent, but all 0s in the mantissa. 
And if the sign bit is 1, then it’s -Inf (negative infinity). 

Not-a-Number: NaN also has all 1s for the exponent, but any other pattern of the 
mantissa bits means NaN. This means that there are many versions of NaN, for all 
variations of the mantissa bits, except when all mantissa bits are 0 (which 
means Inf). Also, if the sign bit is set, then the same patterns are also NaN (a kind 
of “negative NaN”, but that distinction is rarely used). 

Denormalized numbers: Apparently, the designers of the floating-point 
standards think there’s a “huge” difference between 2^-127 and zero. So, they 
decided to “smooth” it out a little by using some special numbers called 
“denormalized numbers” (also called “subnormal numbers”). 

The standard does this by getting rid of the “implicit” mantissa bit. For one special 
exponent value, all 0s, the standard changes the meaning to consider the implicit 
hidden mantissa bit to be a leading 0, rather than a leading 1. 
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Hence, the mantissa can represent fractions less than 1.0, such as 0.1101 rather 
than only 1.1101 (in binary). The special exponent with all 0s therefore never 
represents -127, but represents the special value zero (or negative zero) if all the 
mantissa bits are 0s, or a tiny denormalized number if any of the mantissa bits are 
set. And even though the exponent with all 0s should represent -127, we pretend 
that it is -126, one less, for the denormalized numbers, for “smoothness” reasons 
that I leave as an exercise to the reader, mainly because I don’t understand it. Note 
that denormalized numbers can also be tiny negatives if the sign bit is set. 

Denormalized numbers are all very, very tiny, being less than 2^-126, so this 
feature of floating-point standardization is more useful for high-precision scientific 
calculations at NASA or SpaceX, rather than for most applications. In fact, here’s 
the news about denormalized numbers in most coding: 

We don’t use denormalized numbers. 

In fact, we hate them, because they make our FPU run slow. So, really, the slowness 
of our floating-point code is the fault of the FPU hardware engineers, as we’ve long 
suspected. Fortunately, there’s a way to turn denormalized numbers off and run 
faster, which is discussed below. 

To summarize and/or to further confuse things, the exponent has two special cases: 
all 0s and all 1s. If the exponent bits are all 0s, the number is either zero (or negative 
zero) or a denormalized number (a tiny positive or negative). If the exponent bits 
are all 1s, then the number is Inf or NaN (or negative Inf/NaN). 

Testing for Special Values: The C++ standard has a number of fast routines to 
test a floating-point number. Some of the useful ones in <cmath> include: 

• std::isinf() 

• std::isnan() 

• std::isnormal() 

• std::isfinite() 

For more general analysis of floats, std::fpclassify() in <cmath> returns a 
code that matches special enum values:  

• FP_INFINITE 

• FP_NAN, FP_NORMAL 

• FP_SUBNORMAL, FP_ZERO 
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Unfortunately, it’s hard to distinguish positive and negative infinity, or to detect 
negative zero using these functions. You’ll need to add a call to the 
“std::signbit” function (since C++11 for float arguments or C++23 
for double), which returns true if a floating-point number has the sign bit on. 
There also a “std::copysign” function to copy the sign from one float to 
another, which can be used for sign bit manipulations. Alternatively, define your 
own bitwise macro tricks for these inspections. 

Underflow and Overflow 

Underflow is when a tiny floating-point number becomes so small that we can only 
represent it as zero. This can be a very tiny positive or negative number. Note that 
a negative number with a huge magnitude (near negative infinity) isn’t underflow; 
that’s actually negative overflow. Underflow refers to tiny fractions. 

Generally, underflow isn’t a problem for most code, because a number that low 
isn’t going to affect the results. Similarly, I don’t think we need to worry much about 
subnormal/denormalized tiny numbers either. If a probability is 2^-127 (or 2^-
126 for denormalized), well, it might as well be zero anyway. 

If we’re using Bfloat16 for 16-bit processing, it still has 8 bit exponents, so the 
lowest value is almost the same number (about 2^-127). If we’ve quantized the 
network to FP16 (also 16-bit but with a 5-bit exponent), then the lowest probability 
we can represent is 2^-31, which is also a tiny probability. 

Generally speaking, applications don’t tend to worry about underflow in floating-
point. If a floating-point calculation underflows, it should just go harmlessly to zero. 
More concerning would be integer underflow, which is a different issue of large 
negatives wrapping around to positives. Floating-point underflow is better behaved. 

Overflow is when a number gets so large that it cannot be represented in floating-
point. Note that there are two types of overflow: positive overflow and negative 
overflow. 

The exponent is the problem for overflow. When the number is larger than the 
highest exponent power, then it’s either a very large positive or a very large-
magnitude negative number. For an 8-bit exponent, that 
means 2^+127 (because +128 is reserved for the special Inf/NaN numbers). For 
a 5-bit exponent in FP16, this means 2^+31, which is, coincidentally, also a good 
salary to request at your next performance review. 
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Overflow can be a problem, but usually only in the low-bit processing code where 
arithmetic computations can sometimes go too high. When overflow occurs, it 
could become a special floating-point number (NaN or Inf), or an integer number 
might toggle over to negative (e.g., if integer-only-arithmetic quantized). 

FTZ and DAZ CPU Modes 

In many CPUs, the need to handle overflow, underflow and denormalized values 
is a cause of inefficiency. The CPU can do floating-point computations faster if it 
can ignore those situations. This would be in violation of the IEEE 754 standard, 
but sometimes you have to sacrifice greatness for speed. 

There are two commonly used modifications to CPUs that speed up floating-point 
arithmetic, by ignoring underflow and tiny numbers: 

Flush-To-Zero (FTZ). This mode means that when the results are 
“subnormal” they are “flushed” to zero instead of calculating the correct 
“denormalized” result. Since these denormalized numbers are tiny, this 
isn’t a concern in most code. 

Denormalized-Are-Zero (DAZ). This is similar to FTZ, but allows 
treating inputs that are some type of denormalized floating-point as a zero 
input. 

Both these modes, FTZ and DAZ, are only relevant to very tiny numbers, well 
below the resolution that most applications need to worry about, so you can totally 
enable them, provided we can figure out how to do so. CPUs with support for the 
FTZ and DAZ modes include x86 CPUs and ARM Cortex cores, and likely other 
processors. Google TPU doesn’t support FTZ/DAZ because it operates 
on bfloat16 floating-point numbers. 

Enabling FTZ and DAZ. Finding details on how to enable FTZ and DAZ is quite 
hard! For command-line options, it seems to be “-ftz” on Linux/Mac or 
“/Qftz” on Windows. To control these modes dynamically in C++ code, you need 
to modify the MXCSR x86-64 CPU control register at runtime to set (or clear) the 
bits corresponding to FTZ and DAZ. Some of the primitives available to do so via 
GCC intrinsics include: 

• __builtin_ia32_ldmxcsr 

• __builtin_ia32_stmxcsr 

• _mm_getcsr 

• _mm_setcsr 
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In MSVS, there are preprocessor macros for FTZ in <xmmintrin.h> and for 
DAZ in <pmmintrin.h> header files. These control the FTZ and DAZ bits in 
the MXCSR, which is a CPU register with flags to control the CPU and the FPU. 
The C++ snippet to enable these modes looks like: 

    #include <xmmintrin.h> 

    #include <pmmintrin.h> 

 

    void aussie_float_enable_FTZ_DAZ(bool ftz, bool daz) 

    { 

      if (ftz) {    // FTZ mode 

        _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); 

      } 

      else { 

        _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF); 

      } 

 

      if (daz) {    // DAZ mode 

        _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); 

      } 

      else { 

        _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_OFF); 

      } 

    } 

These intrinsics for FTZ and DAZ are dynamic C++ calls. You can also disable 
these modes in C++, or switch back-and-forth between them dynamically. The 
MXCSR values are per-thread, so these modes must be set at the start of every new 
thread. 

Negative Zero 

Floating-point representations have two zeros: positive zero (the usual “0.0f” one) 
and negative zero (“-0.0f”). Note that there’s no negative zero in integers, but 
only in floating-point types, because integers use two’s complement in C++. 

Usually, you don’t have to worry about negative zero float values, because all of the 
floating-point operations treat zero and negative zero as equal. Negative zero is not 
less than positive zero, but is equal instead. For example, the “==” and “!=” 
operators should correctly handle both zeros as the same, and testing “f==0.0f” 
will succeed for zero and negative zero. 

Normal C++ operations on float types will automatically handle negative zero 
for you, such as “<” will treat the two zeros are equal, not less-than. This happens 
at the cost of some inefficiency. 
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Detecting Negative Zero. Testing for negative zero is not easy. Unfortunately, 
you cannot use the std::fpclassify function because it returns FP_ZERO for 
both positive and negative zero. Here are some fast macros for 32-bit floats that 
look at the bits by pretending it’s an unsigned 32-bit integer: 

    #define AUSSIE_FLOAT_TO_UINT(f) (*(unsigned int*)&f) 

    #define AUSSIE_FLOAT_IS_POSITIVE_ZERO(f) \ 

        (((AUSSIE_FLOAT_TO_UINT(f) )) == 0)  // All 0s 

    #define AUSSIE_FLOAT_IS_NEGATIVE_ZERO(f)  \  

        (((AUSSIE_FLOAT_TO_UINT(f)))==(1u<<31)) // Sign  

Note that these macros only work for float variables, not constants, because the 
address-of “&” operator gets a compilation error for floating-point constants 
(e.g., 0.0f or -0.0f). Also, these only work for 32-bit float types, and 
comparable macros are needed for 64-bit double or 128-bit long double types. 

Pitfall: Bitwise tricks on negative zero. There are some pitfalls with negative 
zero if you are trying to subvert the normal floating-point number representations 
and do bitwise operations on them (as I just did above!). 

For example, if you’re doing bitwise tests on a float, you may still need to test for 
two values of zero, such as using one or both of the above zero testing macros. 

For magnitude comparisons of float types via their underlying bits, there’s also a 
problem. Whereas positive zero is all-bits-zero and will equal integer zero or 
unsigned integer zero, negative zero has the uppermost bit set (the sign bit), so it 
will be a negative integer or a very large unsigned number. Hence, negative zero will 
sort as less than positive zero if using signed integer tests, or will sort as massively 
greater than many numbers if using unsigned integers for testing. 

The problem with negative zero also means that doing any bitwise comparisons will 
fail. You cannot just compare the underlying integers for equality against each other, 
nor can you use byte-wise testing. For example, using memcmp for equality testing 
a float vector will occasionally fail for float values where positive zero 
compares against negative zero, leading to insidious bugs. 

Optimization by Suppressing Negative Zero. Since negative zero introduces an 
inefficiency into basic float operations (e.g., == or != with 0.0), can we block it 
for a speedup? Are there any settings that fix the CPU or the compiler to ignore 
negative zero? 
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The FTZ and DAZ modes are mainly for subnormal numbers, not negative zero. 
I’m not aware of any hardware CPU modes specifically for disallowing skipping 
negative zeros, and I wonder whether they would actually be a de-optimization 
anyway, by forcing the FPU to explicitly check for negative zeros. Apparently, FTZ 
might help avoid negative zero in computations, but I’m not sure it’s 100% of cases. 
There is a GCC flag “-ffast-math” which disables the production of negative 
zero in software. 

Negative Zero. Can we speed up the floating-point computations of our code by 
blocking all floating-point negative zeros? Then the FPU or GPU can assume 
there’s only one type of zero, and run faster. We could either run in a negative-zero-
disabled mode, or use our own bitwise test for floating point zero as all-bits-zero 
(i.e., using the unsigned integer trick). 

What about zero values at runtime? Can we guarantee that it never contains a 
negative zero, and thereby speed up analysis? 

Getting to the Bits in C++ 

The basic 32-bit floating-point number in C++ is a float with a size of 4 bytes. 
How can you manipulate the bits in a floating-point value, using the 32-
bit float type? You cannot use any of the C++ bitwise operators on floating-
point numbers, as they only work for integers. 

The trick is to convert it to an unsigned integer (32-bit) with exactly the same bits 
set, and then use the integer bitwise operations. The obvious way to convert 
a float to unsigned is casting: 

    float f = 3.14f; 

    unsigned int u = (unsigned)f;  // Fail! 

Nope. That doesn’t get to the bits, because it does a proper conversion between 
floating-point numbers and integers, which is usually what you want when you 
aren’t thinking about bits (i.e., all normal people). 

To get to the bits in C++, we have to trick the compiler into thinking that it’s 
already got an unsigned integer with pointer type casts: 

    unsigned u = *(unsigned int*)(&f);  // Tricky! 

That’s a bit old-school for type casting.  
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Here’s the modern way with reinterpret_cast: 

    unsigned u = *reinterpret_cast<unsigned int*>(&f); 

Once we have the bits, then we can twiddle the bits of our unsigned integer to our 
heart’s content. When we’re finished, we can do the same trick in reverse to re-
create a floating-point number: 

    f = *(float *)(&u);   // Floating again... 

    f = *reinterpret_cast<float*>(&u); // Trendy version 

And here’s a timely reminder that it’s important to use an “unsigned” type in 
C++ for the bit faking code, because the “>>” right-shift operator has undefined 
behavior on negatives. 

Other Methods: Type casts aren’t the only way in C++. There’s also a trick 
involving “union” structures, and you can also directly copy the bits to a differently 
typed variable using “memcpy” or “bcopy”. 

It seems to me that this type cast trick should be the fastest way, because a good 
compiler should convert the address-of, reinterpret_cast and indirection 
sequence into a simple variable copy, especially with the “reinterpret_cast” 
hint. However, I haven’t actually benchmarked the speed of the different methods. 

Pitfalls and Portability 

Bitwise manipulation of float data is not the most portable code in the world. Let’s 
examine some of the possible pitfalls in using these techniques. 

Bitwise zero testing: If you’ve gone to the trouble to access the bits of a floating-
point number, you might as well use them. Obviously, testing for “0.0” is a 
common requirement, so let’s make it faster: 

    #define FLOAT_IS_ZERO(f) \ 

     ((*reinterpret_cast<unsigned int*>(&f))==0u) // Bug! 

Oops! We forgot about negative zero. There are two zeros in floating-point, 
depending on the sign bit, and it’s hard to test it efficiently with bitwise operations 
(e.g., mask the sign bit or shift left first). 

Strict anti-aliasing rule. An important point about all this is that most of it is 
platform-dependent, and officially “undefined behavior”. Some of it is standardized 
by IEEE 754, but many variations are possible.  
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Another issue is that there’s a “strict anti-aliasing rule” that specifies that many of 
these tricks are officially non-standard methods. Accessing a floating-point number 
as if it’s an unsigned number is a technical violation of this rule. The 
“reinterpret_cast” method is probably less likely to run afoul of this 
problem, but it’s still not guaranteed. 

Anyway, the union trick and the use of memcpy don’t really strike me as being 
particularly more portable, although memcpy might be less likely to be optimized 
wrongly by a compiler making wrong assumptions. Some additional risk mitigations 
are warranted, such as adding a lot of unit tests of even the most basic arithmetic 
operations. However, you’re still not officially covered against an over-zealous 
optimizer that might rely on there being no aliases allowed. 

Byte sizes. Another much simpler portability issue is checking the byte sizes of 
data types, which can vary across platforms. Most of this bit-fiddling stuff relies on 
particular 16-bit and 32-bit layouts. It doesn’t hurt to add some self-tests to your 
code so you don’t get bitten on a different platform, or even by a different set of 
compiler options: 

   aussie_assert(sizeof(int) == 4); 

   aussie_assert(sizeof(short int) == 2); 

   aussie_assert(sizeof(float) == 4); 

   aussie_assert(sizeof(unsigned int) == 4); 

Also note that for this to work well, both types must be the same size. So, this 
would be a useful code portability check if it worked: 

   #if sizeof(float) != sizeof(unsigned int)  // Fails! 

   #error Big blue bug 

   #endif 

This macro preprocessor trick doesn’t work because sizeof isn’t allowed in a 
preprocessor expression, because the preprocessing phase precedes the syntax 
analysis. A better version uses a “static_assert” statement, which does 
compile-time checking in a more powerful way. 

  static_assert(sizeof(float)==sizeof(unsigned), "Bug!"); 
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Floating-Point Builtin Functions 

The alternative to directly accessing the bits as an unsigned integer is to use the 
existing C++ functions. There are various existing functions for bitwise 
manipulation of floating-point numbers, in two categories: standard C++ library 
functions and compiler-specific intrinsics. 

C++ has standard functions for the manipulation of floating-point numbers, and 
their bitwise representations. 

• std::signbit — Portably test the sign bit of a floating-point number. 

• std::copysign — Portably copies the sign bit from one float, 
merging it with the value of another (i.e., another’s exponent and mantissa). 

There are also various compiler-specific “intrinsics” or “builtins” to manipulate 
floating-point numbers. For Microsoft Visual Studio C++, these are 
in <intrin.h> and there are also versions for GCC and other compilers. 

• frexp — Get the mantissa and exponent. 

• ldexp — Bitshifting by an integer shift-count. 

• scalbn — Also integer bitshift on a float. 

• logb — Extracts the exponent. 

• ilogb — Extracts the exponent to integer. 

• modf — Splits into whole and fractional parts. 

• fma — Fused multiply add on float (Microsoft intrinsic) 

• remainder — Get fractional part of floating-point (Microsoft intrinsic) 

• _fcvt — Low-level convert float to string (Microsoft intrinsic) 

For many of the listed functions, there are additional versions for different floating-
point data types, such as float, double and long double. For example, 
“frexp” will split a double type into its significand (fractional part) and exponent 
integer, but there’s also “frexpf” for 32-bit float types, and “frexpl” for long 
double types. 

Floating-Point Bit Tricks for AI 

Once you’ve got the bits into an unsigned integer, what can you do? Assuming 
you’re willing to throw the standards documents to the curb, you can do quite a lot. 
The bits can be directly manipulated in non-obvious ways to speed up some types 
of floating-point arithmetic with integer bitwise arithmetic on the underlying bits.  
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Examples of floating-point bit manipulations used to optimize neural networks 
include: 

• Sign bit flipping: this can be used for fast non-multiplication binarized 
networks with floating-point computations. 

• Exponent bit manipulations: bitshifting float values in logarithmic 
quantization can be implemented as integer addition on the exponent bits 
of a float. 

• Add-as-integer networks: This method simply adds the underlying bit 
representations together as integers, to create a type of multiplication-free 
neural network. Weirdly, this simple trick implements an approximate 
multiplication algorithm known as Mitchell’s algorithm. 

• Fast log2 computation on float types using the exponent bits directly. 

The first step is to extract the bit patterns. Let’s assume it’s a standard 32-bit float 
type with 1 sign bit, 8 exponent bits, and 23 stored mantissa bits. You can get the 
different bits: 

   int signbit = (u >> 31); 

   int exponent = ( (u >> 23) & 255 );  // Fail! 

   int mantissa = ( u & ((1 << 23) - 1 )); 

Nice try, but that’s only 2 out of 3. The exponent is wrong here! The bits are correct, 
but it’s not the right number. We have to subtract the “offset” (or “bias”) of the 
exponent, which is 127 for an 8-bit exponent. This is correct: 

   int exponent = ( (u >> 23) & 255 ) - 127;  // Correct! 

Note that the sign bit and mantissa can be stored as unsigned (i.e., positive or 
zero), but the exponent must be a signed integer, even though it is extracted from 
the bits of an unsigned int. For a fraction like decimal 0.25 (i.e., a quarter), this is 
equal to 2^-2, so the exponent is -2. In an 8-bit exponent, the range of the 
exponent is -128 to +127. Note that the sign bit in a float specifies the overall 
sign of the whole number, and is not the sign of the exponent. 

Here are some macro versions of the above bit extractions: 

    #define AUSSIE_FLOAT_SIGN(f)     \ 

      ((*(unsigned *)&(f)) >> 31u)   // Leftmost bit 

    #define AUSSIE_FLOAT_EXPONENT(f) \ 

      ((int)(((((*(unsigned*)&(f)))>> 23u) & 255) - 127))  

    #define AUSSIE_FLOAT_MANTISSA(f) \ 

      ((*(unsigned*)&(f)) & 0x007fffffu) // Right 23 bits 
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Note that these macros don’t work for constants, but give a compilation error such 
as “l-value required”. This is because of the “&” address-of operator trick being 
used needs a variable, not a constant. I don’t see an easy way around it for bitwise 
trickery. 

If you dislike bits for some strange reason, here’s a simple way to define the sign 
bit macro using the “<” operator, which also works on constants: 

  #define AUSSIE_FLOAT_SIGN(f) ( (f) < 0.0f) // Sign test 

Example: Add-as-int Approximate Multiply 

The add-as-integer method suggested by Mogami (2020) simply adds the integer bit 
representation of two floating-point variables, as if they are integers. It’s quite 
surprising that this has any useful meaning, but it’s actually a type of approximate 
multiplication called Mitchell’s algorithm. Here’s what the C++ code looks like on 
32-bit float types: 

    float aussie_add_as_int_mogami(float f1, float f2) 

    { 

        // Add as integer Mogami(2020) 

        int c = *(int*)&(f1)+*(int*)&(f2)-0x3f800000;  

        return *(float*)&c; 

    } 

The magic number 0x3f800000 is (obviously) equal to “127<<23” and its 
purpose is to fix up the offset of the exponent. Otherwise, there are two exponent 
offsets of 127 combined. (Is there a faster way? It’s annoying to waste a whole 
addition operation on what’s just an adjustment.) 

Note that this algorithm is one exceptional case where we don’t want to 
use unsigned integer types when tweaking bit representations. This trick needs 
the temporary variable of type “int” and the pointers to be “int*” so that it can 
correctly handle the sign bits of the two floating-point numbers. 

This add-as-integer algorithm is not restricted to 32-bit float data. It should also 
work for 16-bit floating-point numbers in both float16 and bfloat16 formats, 
provided the magic number is changed to a different bitshift count and with an 
offset of 15 (not 127) for 5-bit exponents. 
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Example: Float Bitshift via Integer Addition 

This is another surprising bitwise trick on floating-point numbers. You cannot 
perform the standard bitshift operators on float types in C++, so you cannot 
easily speed up floating-point multiplication via bitshifts in the same way as for 
integers. 

Bitshifts are a fast way of doing an integer multiplication by a power-of-two (e.g., 
“x<<1” is the same as “x*2”). Note that it also doesn’t work to convert 
the float to its unsigned int bit version and shift it using integer bitshift 
operators. 

On some C++ coding platforms, there are some builtin special functions such 
as ldexp and scalbn for doing bitshifting on float data. The ldexp function 
accepts an integer power, and then bitshifts a floating-point number by this many 
places. The ldexp function is for all your double types, ldexpf is for float, 
and ldexpl is for long double types. The scalbn set of functions appears to 
be almost identical to ldexp functions. There is also a reverse function “frexp” 
which extracts the significant (fraction) and the power-of-two for a floating-point 
argument. 

Although we can’t bitshift floating-pointer values, there is an intriguing alternative 
optimization using integer arithmetic directly: addition. The suggestion in the 
DenseShift paper (Li et al., 2023) is to simply add the shift count to the exponent 
bits using integer addition. 

Here’s some example C++ code that works for 32-bit floating-point numbers: 

    float aussie_float_bitshift_add_int(float f1, int bits)    

    { 

        // Bitshift float by adding int to exponent bits 

        // FP32 = 1 sign bit, 8 exponent, 23 mantissa 

        unsigned int u = *(unsigned int*)&f1; // Get the bits 

        if (u == 0) return f1;  // special case, don’t change 

        u += (bits << 23);  // Add shift count to exponent 

        return *(float*)&u; // Convert back to float 

    } 

How does it work? Well, it makes a certain kind of sense. The exponent in a 
floating-point representation is a power-of-two, and here we are bitshifting, which 
is increasing the total number by a power-of-two. Hence, we can increase the 
power-of-two by adding 1 to the exponent, and it also works for adding numbers 
more than 1. 



145                                       C++ Low Latency 
 

Note that this code also works for bitshift of a negative count (e.g., bitshift of -1 
subtracts from the exponent and thereby halves the number) or zero (unchanged). 
However, this exponent-addition trick can overflow if the resulting number 
overflows or underflows the exponent range (e.g., -128 to +127). 

This method has thereby improved the performance of floating-point 
multiplication by changing it to integer addition. The idea works provided we are 
multiplying by a power-of-two, which is done in logarithmic quantization. 
However, it’s a little tricky in that special formats like zero (and NaN) are 
problematic for this algorithm. I had to add the test “u==0” which slows things 
down (maybe there’s a better way?). Also, this approach can theoretically overflow 
the exponent bits, messing up the sign bit, but that’s only if the float is very big 
or very tiny. Checking for all these wrinkles will slow down the code. 

Example: Log2 of Floating-Point is the 

Exponent 

The log2 function for float types is a non-linear function that is quite expensive 
to compute. We already computed log2 of an integer with low-level bit fiddling 
methods based on a count-leading-zeros algorithm in the bitwise operations 
chapter. There’s also a different bitwise trick for log2 of floating-point numbers. 
This method computes the truncated integer version of the log2 algorithm (e.g., 
for use in logarithmic power-of-two quantization). There’s a very easy way: 

    The base-2 logarithm is the exponent! 

It’s sitting right there, already calculated, hidden in plain sight amongst the 32 bits 
of your friendly float variables. Here’s some C++ code to extract it: 

    int ilog2_exponent(float f) // Log2 for 32-bit float 

    { 

        unsigned int u = *(unsigned int*)&f; 

        int iexp = ((u >> 23) & 255);  // 8-bit exponent 

        iexp -= 127;  // Remove the "offset" 

        return iexp; 

    } 

Alternatively, for greater portability and probably extra speed, too, there are some 
standardized builtin C++ functions available across various platforms (including 
Linux and Microsoft) that can extract the exponent: frexp, ldexp, ilogb, 
and scalbn, are some that come to mind. 
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14. Arithmetic Optimizations 

Types of Arithmetic Optimizations 

There are two basic ways that arithmetic computations can be sped up whilst 
retaining the same results: 

• Single operator improvements 

• Expression-level optimizations (multiple operators) 

As an example of single operator optimizations, consider replacing the 
multiplication operator. Alternative forms of arithmetic include bitwise shifting or 
addition.  

The ways to do fewer multiplications tend to involve higher-level algorithmic 
changes to the model, such as pruning or quantization. 

Some of the methods of speeding up arithmetic come from the theory of compiler 
optimization (e.g., strength reduction, sub-expression elimination). Hence, the 
compiler will often automatically perform these types of optimizations (when the 
optimizer is invoked).  

To some extent, this makes these transformations redundant. Even so, good 
programming practice is to avoid situations where these optimizations are needed 
on a large scale. The compiler does not look at the program as a whole and can miss 
some “obvious” optimizations. 

Operator Strength Reduction 

Individual operations in C++ can be optimized in several ways. The general term 
is “strength reduction” because a stronger operator with high computation 
complexity is “reduced” to an equivalent operator that is simpler and faster.  

Strength reduction is a technique used in automatic optimization by compilers, but 
can also be used by programmers to improve algorithms. 
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The main “strong” operations that we’re trying to avoid are: 

• Floating-point arithmetic (even addition) 

• Multiplication 

• Division 

• Remainder (% operator) 

• Math functions (e.g., sqrtf or expf) 

Strength reduction has particular relevance to AI engines because the main 
bottleneck is floating-point multiplication. Many of the research papers on 
speedups are about replacing the floating-point multiplication operation with 
something simpler, like addition or integer arithmetic. 

Some of the general approaches in regard to strength reduction include: 

• Bitwise operations (e.g., bitshifts can replace multiplication) 

• Multiplication is slower than addition. 

• Avoid division and modulo/remainder operators (they’re the worst!) 

• Use integer arithmetic rather than floating-point (where possible) 

• Use float single-precision arithmetic, not double-precision. 

• Approximate arithmetic (e.g., for math functions) 

Bitshift for multiplication: The canonical example that everybody knows is that 
shift operators can replace multiplications by a power of two. But it’s only for 
integers, not for floating-point numbers. Here’s a dummy example of integer 
multiplication; 

   y = x * 4; 

This can be more efficiently coded as a left bitshift: 

   y = x << 2; 

Bug alert! If you’re making this code change, you’re likely to introduce some bugs. 
The “<<” and “*” operators have different precedence levels, so make sure you 
add more parentheses. Also, consider whether you need to use “unsigned” type 
when switching to a bitwise operator. 
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Right shift for division: The use of bitshifting works for division, too (but only 
for unsigned): 

   y = x / 4;   

   y = x >> 2u;  // faster 

Bitwise remainder calculations: The arithmetic modulus operator (remainder) 
can also be optimized for power-of-two operands (but only on integers): 

   y = x % 512;    // Remainder (mod) 

   y = x & 511u;   // Bitwise-AND 

And here’s another one with integer relative comparisons versus bitwise-and, 
although this one might not necessarily be faster: 

   if (x >= 512) 

   if (x & ~511u)  // Bitwise-AND of the complement 

(unsigned) 

Avoiding multiplication: There are some simple cases even with the most basic 
operators that have multiple options: 

    y = x * 2; 

    y = x + x;   // Addition 

    y = x << 1;  // Shift 

Automatic Strength Reduction: In theory, C++ compilers could know what will 
be faster on its platform, and perform all these optimizations automatically when 
compiling the program. The optimizers probably do some of them, but they cannot 
do them all. 

Intrinsic Functions: Other more advanced types of strength reduction involve 
avoiding costly primitives, such as mathematical functions. For example, there are 
bitwise arithmetic tricks to quickly compute the integer log2 function. 

GPU Strength Reduction: One final note is that when doing AI coding work, we 
aren’t as concerned about which C++ operator works the best. The more important 
concern is which operation is most efficient in the GPU or other non-GPU 
hardware acceleration (e.g., AVX-512 on CPU). 
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Finally, note that these optimizations are local optimizations, and the same ideas 
apply globally to the entire AI engine architecture. There’s been a lot of research 
trying to change all of the arithmetic in model inference from multiplication to 
bitshifting, such as using addition or bitshifts. 

Avoid % Remainder Operations 

One common use of the remainder operator is the use of modulo arithmetic, such 
as the wraparound array implementation of a queue abstract data type, where the 
value of a variable is cyclically counted from 0 up to N-1, and then back to 0.  

The most common idiom for coding this is: 

    x = (x + 1) % N; 

However, the % operator is expensive, and in this case it is not really needed. The 
following code sequence performs the same task more efficiently: 

    if (x == N - 1) 

        x = 0; 

    else 

        x++; 

This can also be written more concisely, but not necessarily more efficiently, as an 
expression with the “?:” ternary operator: 

    (x == N - 1) ? (x = 0) : (x++); 

Another example of a clever avoidance of % is when the operand is similar to the 
usual byte or word size. For example, consider this remainder: 

    x % 256 

This can be more efficiently coded with bitwise-and using: 

    x & 255 

But this can be even more efficiently coded as a type cast: 

    (unsigned char) x 
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The conversion to this “unsigned char” type will be efficiently implemented by 
grabbing a byte out of a word. Unfortunately, this method is not portable to all 
obscure systems, as it relies on an “overflow” being handled harmlessly, and on 
“unsigned char” always containing 8 bits. 

Reciprocal Multiplication 

Division is a slow operation, whether in a CPU or a GPU. Multiplication is often 
significantly faster than division, and in some cases a division can be replaced by a 
multiplication using the reciprocal. A case in point is floating-point division by a 
constant. For example, consider the division: 

    f = g / 100.0; 

This can be replaced by the multiplication: 

    f = g * 0.01;  // Reciprocal 

If the divisor is a symbolic constant, it is possible to replace the symbolic constant 
with a hard-coded constant (or another symbolic constant). However, it is more 
convenient to replace the constant with an explicit reciprocal calculation. For 
example, consider the code: 

    f = g / DIVISOR; 

This can be rewritten as: 

    f = g * (1.0 / DIVISOR); 

The compiler should calculate the reciprocal using “constant folding” at compile-
time. Note that the brackets around the division expression are probably not strictly 
necessary because optimizers know about associativity, but are certainly helpful to 
make life easier for the optimizer (and these poor critters need a break every now 
and then). 

If the divisor is a complex expression, the compiler might not automate the use of 
a reciprocal. Here’s the slow version of division by a scale factor: 

    v[i] /= sqrtf(3.14159f); 
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Here’s the faster way using the reciprocal of the constant: 

    v[i] *= 1.0f / sqrtf(3.14159f); 

And we really should pre-calculate this constant using constant folding and 
a static variable: 

    static const float scalefactor = 1.0f  

                                    / sqrtf(3.14159f); 

    v[i] *= scalefactor; 

Integer Arithmetic 

Real arithmetic is slow compared to integer arithmetic. Hence, it is favorable to 
replace real arithmetic by equivalent integer arithmetic. Real arithmetic can be 
replaced by integer arithmetic when only limited precision is required (e.g., 1-3 
decimal places). To do this, work in integer units that are 10, 100 or 1000 times 
larger (for 1, 2 and 3 decimal places) so that the decimal places appear as the lower 
digits of the integers. 

To convert the integer into its true integer and fractional parts is quite simple. To 
get at the fractional part, calculate the number modulo 10, 100 or 1000 (using 
the % operator). To get the true integer part, divide by 10 or 100 or 1000 — 
remember that integer division truncates the fractional part. 

A good example is: when working in dollars and cents, do all calculations in terms 
of cents (an integer). Then when printing it out, convert to dollars and cents using: 

    cents = value % 100; 

    dollars = value / 100; 

However, note that this is now using two of the worst integer operators: remainder 
and division. The hierarchy of cost for integer operations is similar to floating-point: 
integer addition and subtraction are faster than multiplication, but division is still 
the worst, even for integers. 

There appears little to be done to replace integer division with multiplication. 
Multiplying by the reciprocal will change an integer operation to a floating-point 
operation and will probably increase execution time. A power-of-two integer 
division could be done via the “>>” right bitshift operator, provided that it cannot 
be negative and uses an unsigned type. 
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Expression Transformations 

Expression-level types of arithmetic improvements on an expression with multiple 
operations include: 

• Constant folding (compile-time precomputation of constant expressions) 

• Common subexpression elimination (only computing things once in 
expressions) 

• Algebraic identities in computations 

• Type consistency (avoid conversions) 

Common Subexpression Elimination 

Common subexpression elimination (CSE) is avoiding the recomputation of the 
same expression twice. There are many cases where the same computation appears 
multiple times in a single expression, or across the control flow of a program. 
Compiler optimizers attempt to automatically detect such cases and reuse the first 
computation. 

In a complicated expression, there are often repeated sub-expressions. These are 
inefficient as they require the computer to calculate the same value twice or more. 
To save time, calculate the sub-expression first and store it in a temporary variable. 
Then replace the sub-expression with the temporary variable. For example: 

    x = (i * i) + (i * i); 

With a temporary variable, this becomes: 

    temp = i * i; 

    x = temp + temp; 

Note that this attempt to be concise is incorrect: 

    x = (temp = i * i) + temp; // Bug 

This may fail because of its reliance on the order of evaluation of the + operator. It 
is not actually guaranteed in C++ that the + operator is evaluated left-to-right. 

Common sub-expressions do not occur only in single expressions. It often happens 
that a program computes the same thing in subsequent statements.  
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For example, consider the code sequence: 

    if (x > y && x > 10) { 

        // ... 

    } 

    if (x > y && y > 10) { 

        // ... 

    } 

The Boolean condition “x>y” need be calculated only once: 

    temp = (x > y); 

    if (temp && x>10) { 

        // ... 

    } 

    if (temp && y>10) { 

        // ... 

    } 

Algebraic Identities 

The calculations in some complicated expressions can be reduced by transforming 
the expression into another equivalent form. The aim when using algebraic 
identities is to group the operations differently, to reduce the total number of 
arithmetic operations. Care must be taken to ensure that the new expression has 
equivalent meaning. For example, the short-circuiting of the logical operators can 
cause differences. Some useful algebraic identities are: 

    2 * x == x + x == x << 1 

    a * x + a * y == a * (x + y) 

    -x + -y == -(x + y) 

There are also Boolean algebraic identities that can be used to perform fewer logical 
operations: 

    (a && b) || (a && c) == a && (b || c) 

    (a || b) && (a || c) == a || (b && c) 

    !a && !b == !(a || b) 

    !a || !b == !(a && b) 
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Float Type Conversions 

Hidden unnecessary C++ type conversions are a common source of extra 
inefficiency. The main type in code is usually “float” (32-bit), rather than 
“double” (64-bit). Avoid unnecessary type conversion code in two ways: 

• Don’t mix float and double 

• Don’t mix float and int 

The use of float and int tends to be something professional C++ programmers 
are aware of, after having been burned a few times, and doesn’t occur that often by 
accident. 

However, inadvertently mixing your float and double is difficult to avoid, and 
sneaks into your code all the time. For example, here’s some C++ code that looks 
perfectly correct: 

    float scalefactor = sqrt(2.0) * 3.14159; 

You know this isn’t AI code because it doesn’t have 27 decimal places for pi, which 
we’ve memorized by rote. AI engines don’t really need anywhere near that much 
precision, but it looks good for the boss. 

The above code is also a small slug, because it may be unnecessarily using 
“double” size arithmetic, although the compiler might fix it with constant folding 
(but emit a warning anyway).  

Here’s the corrected code: 

    float scalefactor = sqrtf(2.0f) * 3.14159f; 

Note that this example shows there are two places where an “f” suffix is needed to 
signify that float arithmetic is required: 

• Numeric constants (i.e., “2.0f” specifying a 32-bit float, rather than 
“2.0”, which is a 64-bit double constant). 

• Standard C++ functions (i.e., the “sqrtf” function returns float rather 
than “sqrt” returning double). 
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Without the suffix “f”, the default type is chosen with double type constants 
and double arithmetic functions.  

A lot of C++ compilers will warn about these type conversions losing precision, so 
if you aim for warning-free compilation as a quality goal, you’ll also fix most of 
these wasteful hidden type conversions. 



157                                       C++ Low Latency 
 

15. Compile-Time Optimizations 

C++ Compile-time Techniques 

Compile-time processing is the optimal way to run a program. All the work is done 
by the compiler and none by your program. There are literally zero instructions 
executed on the CPU at runtime, whether it’s doing training or inference. It will be 
blindingly fast for your users. 

If only all code could be like that! 

The reality is that programmers are still needed and that code still needs to run 
(sigh!). But to make it faster, there are lots of ways to have more computation done 
by the compiler, long before it ever goes near a user. 

The C++ programming language has numerous features that help perform work at 
compile-time. These include ways to explicitly control what goes to the compiler, 
or to give more information to the compiler so that its optimizer can do good work 
on your behalf.  

Some of the various C++ language features to consider include: 

• Conditional compilation — #if/#ifdef statements 

• inline functions 

• Templates — these expand at compile-time 

• Symbolic constants — const or #define 

• Function-like macros — #define with parameters 

• Constant hints — constexpr, if constexpr, etc. 

• Global and static variable initializations 

• static data members — fixed data in C++ classes 

• Type traits — compile-time type testing 

• Restricted pointers — ignore aliasing risks 

But when we’re doing AI, there’s another compile-time data structure to consider: 
the whole LLM model itself. 
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C++ Optimizers 

Every C++ compiler has optimization built into the code generation phase. 
Typically, there are ways to specify that a higher degree of code optimization should 
be performed. Methods to control the settings include: 

• Command-line arguments (e.g., “-O1” or “/O1”) 

• Configuration settings (e.g., Project Settings in the MSVS IDE) 

• #pragma preprocessor directives 

Take note of the meaning of the optimizer settings. For example, on MSVS the 
setting “/O1” optimizes for memory, not speed! Also, don’t be like me and assume 
that the defaults are going to be what you want.  

Looking at the MSVS IDE optimizer settings in my AUSSIE project file, I found: 

• “Optimization” was “disabled” by default. 

• “Enable Intrinsic Functions” was “No” by default. Why not? 

• “Favor Size or Speed” was “neither” by default. Come on, why is there no 
“both” option? 

• “Inline Function Expansion” was “default” at least. 

When to enable the optimizer? Should you run the optimizer at every build? At 
what level? 

Note that your policy should not be to turn up the optimization to maximum level 
just before you ship your code to users, because your code can change in a very bad 
way.  

Don’t assume that turning the optimizer mode up to super-crunch is always an easy 
win, as optimization can trigger latent glitches in your code by reorganizing memory 
or reordering instructions. 

What does the optimizer do? In order to optimize code, it’s important to know 
what sorts of optimizations your compiler is doing automatically. Compilers have 
been doing optimizations for literally 50 years, and the state-of-the-art is quite 
amazing, with an extensive body of research theory.  
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Some of the main automated compiler optimizations include: 

• Constant folding/propagation 

• Constant expression evaluation 

• Common subexpression elimination 

• Redundant assignment removal 

• Strength reduction 

• Algebraic optimizations 

• Register allocation 

• Loop optimizations (e.g., unrolling) 

• Auto-vectorization 

If you make simple changes to your code with some of the obvious things above, 
it’s not going to give you a speedup. The compiler has already done it for you. 

However, there’s a limit to what compilers can do. They certainly can’t make 
architectural changes, and there’s also many mid-level algorithmic changes that 
cannot be automated. 

Function calls inside expressions are a good example of code changes that might 
need to be manually optimized. When the compiler sees a function call used in 
arithmetic, it isn’t always able to know what that function is going to do, and has to 
be conservative by avoiding possibly incorrect optimizations. 

Floating-Point Optimizer Options 

Some C++ compilers have optimizations that you can use to speed up your 
Floating-Point Unit (FPU). Some of the options for GCC include: 

• “-ffast-math” option — This option is a broad enabler of multiple 
floating-point speedups, such as -fno-math-errno and -ffinite-
math-only. It also disables negative zero. 

• “-fno-math-errno” option — This allows the standard library math 
functions such as sqrt to run faster and also be more amenable to 
parallelization, simply by allowing them to never set the global “errno” 
variable. The use of errno was once a great way to track error codes, but 
it’s also a blocker for thread-safety and parallelization. And let’s be frank: 
you weren’t ever checking errno anyway, so turn it off! 

• “-ffinite-math-only” — This mode allows GCC math library 
functions to skip any checks for Inf or NaN, which can make them 
marginally faster. 



David Spuler                                               160 
 

Microsoft Visual Studio C++ also has its own set of FPU options: 

• “Floating-Point Model” settings in a Project’s Property Pages under 
“C++” in the “Code Generation” group has options “/fp:precise”, 
“/fp:strict”, or “/fp:fast” 

• “Enable Floating-Point Exceptions” can be turned off if you like. 

People Helping Parsers 

The humble C++ compiler needs your attention. Hat in hand, the compiler is sitting 
there saying “I am but a poor, helpless lexer, without even a single neural network. 
Please help me.” Hence, please consider donating your time to help a poor 
struggling compiler in your neighborhood. 

There is a long history of the C++ compiler needing “hints” about optimization 
from the programmer. The early C++ language in the 1990s had a “register” 
specifier that hinted to the compiler that a variable was going to be highly used, and 
the compiler should optimize it by putting the variable in a CPU register. The 
“register” keyword has since been deprecated in C++17, which indicates that 
compiler register allocation algorithms no longer benefit from human help. 

Some of the other longstanding C++ keywords that can be used for efficiency-
related purposes include: 

• inline 

• const 

• static 

And with the evolving C++ standards, there’s a whole new set of directives that are 
hints to the compiler about how to optimize: 

• constexpr 

• constinit 

• consteval 

• reinterpret_cast 

• restricted pointers (“restrict”) 

• [[likely]] and [[unlikely]] path attributes 

The constexpr and related directives help the compiler do “constant folding” 
and “constant propagation” to compute as much as possible at compile-time, 
thereby avoiding any runtime cost for lots of code.  
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In fact, the idea is extended to its logical asymptote, whereby you can declare an 
entire function as “constexpr” and then expect the poor compiler to interpret 
the whole mess at compile-time. Pity the overworked compiler designers. 

The “restrict” pointer declarations help the compiler with advanced 
optimizations like loop unrolling and vectorization by telling the compiler to ignore 
potential “aliasing” of pointers, allowing much more powerful code 
transformations on loops. The restricted pointer optimizations have been 
formalized in C++23, but non-standard versions have long existed. The possible 
benefit is that restricted pointer specifications might help the compiler do auto-
vectorization of loops into parallel hardware-assisted code. 

How much do these help? It’s rather unclear, and the compiler is free to simply 
ignore these hints. Compilers already did a lot of constant propagation 
optimizations before the “constexpr” directives came along, so presumably 
compiler designers have upped their game even further now. 

Inline Functions 

Placing the keyword “inline” before any function declarations makes that 
function instantly disappear in a puff of smoke. Well, sort of. It gives your C++ 
compiler the hint to optimize the code by putting the function’s body there instead 
of the function call. This is faster, but means there are many copies of the function’s 
statements, so it increases code size. 

Which functions should you inline? General wisdom is to do so for these types of 
C++ functions: 

• Short functions (esp. single-statement functions) 

• Getters and setters in a class 

• Frequently called functions at the bottom of the call hierarchy. 

The inline specifier is just a hint. Your compiler is free to completely ignore you. 
In fact, this choice will probably disappear in a few years, as compilers become 
better than humans at choosing which functions to inline. 

If you want to force the compiler to inline, use preprocessor macros. However, 
there’s a whole minefield of problems in function-like macros. For example, you 
need to add parentheses around the whole expression and also around each 
parameter’s appearance in the replacement text. Hence, inline functions are 
much safer than macros. 
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The value of inline functions is not only from avoiding function call overhead. 
The merging of the statements into the caller’s code also allows many other 
optimizations to be applied there as follow-up transformations. Constants can be 
propagated further through the inlined statements, which is similar to constexpr, 
but the range of optimizations is much larger with inline. 

GCC has some additional C++ language features related to inlining. There is the 
“always_inline” function attribute which says to always inline this function, 
and the “flatten” attribute which says to inline every call to other functions 
inside this function. There is also the “gnu_inline” attribute that prevents 
creation of a non-inlined function body. 

inline function limitations 

The inline specifier is wonderful when it works. A very important point to note 
about inline functions is that the inline specifier, by itself, is not enough to 
guarantee that inline code will be generated. The other requirement is that the 
compiler must know the function body code, where the function is called. 

Hence, an inline keyword in a function prototype declaration is not enough. The 
executable statements inside the function’s definition (i.e., the function body) must 
be available to the C++ compiler. Otherwise, how is the compiler to know what 
inline code to expand a function call into? I guess in theory the C++ compiler could 
maintain a huge database of all the functions in your source code, or scan through 
all the CPP files to find it, and that would be amazing, but we’re not there yet.  

In practice, the compiler will only inline functions where it has seen the function 
body within the current C++ source file or an included header file. This 
requirement imposes two restrictions on the use of inline functions: 

1. Member functions declared as inline should include the function 
body inside the same header file as the class declaration. This can be 
achieved by placing the function body of a member function inside the 
class declaration. For a more readable style of coding when there are 
many inline member functions, the class declaration can declare the 
function prototypes, and then provide the inline function definitions 
immediately after it, in the same header file. This restriction ensures that 
whenever the class declaration is included as a header file, the member 
function body is available for inlining. 
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2. Non-member inline functions must be defined before they are used 
within a source file, preferably by placing the inline functions in a header 
file. Placing inline functions at the top of a source file allows the inlining 
of any function calls later in the same source file, but calls to the functions 
from a different source file cannot be inlined by the compiler unless 
the inline function definition is placed in a header file. 

Non-inlined functions 

Some functions declared as inline will not be expanded into inline code by the 
compiler, simply because they are too complicated for the compiler to handle. In 
this case, the inline specifier is ignored and the function is treated like any other 
function. The sophistication of the inline code generation depends on the compiler 
implementor. 

Even if a compiler could theoretically inline a function, the compiler is sometimes 
still forced to generate a “real” function. There are various possible reasons for this: 

1. The name of an inline function is used as a pointer-to-function 
constant. 

2. A call to the inline function from within another source file. 

3. virtual member functions. 

When an inline function is called from a source file, where the function body 
has not been made available, the compiler generates a real function call (simply 
because it cannot inline the function). Hence, the real function must exist and be 
linked like any other function. Fortunately, the placement of inline functions in 
header files as discussed above will avoid this for any function the compiler decides 
to inline. 

Inline Variables 

Since C++17 you can define a variable as “inline”. What does this do? 

Basically, it’s not really much of a speedup, but makes it easier to manage global 
constants, global variables, or static data members in C++ classes. You can 
declare these variables as “inline” in a header file, with an initializer: 

    inline int g_x = 3; 
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Then you can with wild abandon include that header file all over the place without 
any problems whatsoever. The C++ linker is required to: 

• Merge all of them into one variable at link-time. 

• Guarantee that it’s initialized as specified. 

• Have the same address for that variable everywhere. 

I find this addition to C++ somewhat humorous because it fixes up a huge mess 
that’s existed since old K&R C code, and I’ve battled against it many times trying 
to get my program linked. I’m not going to irritate myself by repeating all the quirks, 
but it was always messy whether you had a global variable that was extern or non-
extern, initialized or non-initialized, in a header file or a non-header file. So, if 
you ask me, the way that “extern” variable declarations “worked” was always 
broken, and now it’s fixed in C++17. Hooray! (A bit late for me.) 

Overall, allowing “inline” for variables is helpful to efficiency because you can 
be guaranteed about constants, static members, or global variables at compile-
time. And it’s always nice to get your program to link. 

Constant Specifiers 

The “const” keyword means that something is constant, and cannot be modified. 
It is helpful for efficiency, but its role is also to help detect programming errors, 
where code accidentally attempts to modify a constant variable or object. There are 
multiple places where “const” can be used. 

• Symbolic constants 

• const variables 

• const objects 

• const function parameters (i.e., “const&” idiom) 

• const member functions (read-only) 

But don’t get me started on “const correctness.” I’ve seen too many dawns 
fighting with compilers about const. Anyway, let’s move on now, and assume 
that we love const. 

Basic const symbols. Symbolic constants can be declared as a representation of a 
numeric value or other type data (instead of using #define symbols): 

    const float pi = 3.14; 
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Set-once variables with const. Variables can be made constant via “const”, 
which is effectively the same as a symbolic constant, except that the initializer need 
not be a compile-time constant. It is a “set-only-once” variable. The C++ compiler 
ensures that const variables cannot be modified, once they are initialized. 

    const int scale_factor = get_config("scale"); 

    const int primes[] = { 2, 3, 5, 7, 11, 13, 17 }; 

Function parameters and const. The const specifier can ensure that function 
parameters are not modified, especially for arrays passed by reference. const on a 
scalar parameter type such as int is not as useful, only ensuring that the code inside 
the function doesn’t modify the parameter (which isn’t really a problem anyway). 
However, the idiom of “const&” to specify a const reference as a function 
parameter allows constant pass-by-reference of object parameters, which is 
extremely important for C++ efficiency. 

Instantiate-only objects with const. Class objects can also be usefully declared 
as const variables. When the variable is a const object, it can be instantiated via 
a constructor, but cannot be modified thereafter. 

    const Complex cfactor(3.14, 1.0); 

Member functions declared const. Class member functions can be declared by 
adding the keyword “const” immediately after the function parameter list: 

    int MyVector::count() const; 

The C++ compiler blocks a const member function from modifying data 
members, although it can still change “static” data members. For const object 
variables, the C++ compiler ensures that any calls made to non-const member 
functions are disallowed. 

Non-member functions. Note that a non-member function cannot be const. 
The actions of a friend function or other non-class function are controlled by 
using const on the parameters, rather than the whole function itself. 

Beyond const. Newer C++ features have generalized and improved some of the 
uses of const. The “constexpr” specifier is much more powerful in overall 
terms of allowing compile-time optimizations, as are its derivatives “constinit” 
and “consteval.” The newer use of “inline” on a variable (yes, a variable, not 
a function, supported since C++17), can be helpful for safely sharing constants 
across multiple files. 
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Constant Expressions Specifier 

The constexpr keyword is an optimization hint for the compiler that’s more 
powerful than “const.” Whereas const only guarantees that something won’t 
change, constexpr is a guarantee by the human that something can be evaluated 
at compile-time. 

The compiler should use the constexpr hint to try to propagate constant values 
throughout the evaluation of expressions and function calls, producing an overall 
speedup. However, if the compiler doesn’t have the capability to do the level of 
compile-time optimization required, or if the human has told the machine a bald-
faced lie, there’s no penalty and the code just runs like it never had 
a constexpr specifier. 

There’s not a whole lot of difference between const and constexpr if you use 
it only for named constants: 

    const float PI = 3.14f; 

    constexpr float PI = 3.14f;  // Same same 

constexpr functions 

The real power is when you use constexpr for functions. 

    const float SQRTPI = sqrtf(3.14f);   // Works? 

    constexpr float SQRTPI = sqrtf(3.14f); // Works? 

Oh, dear! I just tested this code snippet, and the const version works, whereas 
the constexpr version fails to compile, which is the opposite of what I was 
expecting. According to an informed source that was trained on Internet 
scrapings, sqrtf is not going to be declared as a “constexpr” function until 
C++26.  

Alas, by then all C++ programmers will have been replaced by robots, so feel free 
to skip this section. 

The apparently futuristic idea is that sqrtf should have a “constexpr” keyword 
in its declaration, because the function return value can be computed at compile-
time if you pass it a constant argument. In other words, the compiler can evaluate 
“sqrtf(3.14f)” at compile-time. Hence, the whole function should be declared 
“constexpr” in the standard library header file.  
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The const version is also probably not evaluating the sqrtf function at compile-
time, but just calling it dynamically whenever the const variable is first initialized 
(this non-compile-time initialization is allowed for const variables, provided you 
don’t later attempt to change its value). 

Anyway, you can already declare your own function with the “constexpr” 
specifier. 

    constexpr int twice(int x) 

    { 

        return x + x; 

    } 

constexpr functions vs inline functions 

A lot of the same value in terms of optimization can be had by making a function 
just inline rather than constexpr. Note that you can use both, but 
officially constexpr for functions implies inline on the function as well. 

Is constexpr any better than just inline? If you pass a constant argument to a 
small inline function, then the expansion of the function body will then trigger 
lots of constant propagation optimizations, effectively evaluating most of it at 
compile-time, which is almost the same as constexpr. 

constexpr is supposed to be more formal in guaranteeing that the result of a 
function is a compile-time constant, and the compiler is honor-bound to do 
“compile-time function evaluation” to get the constant return value. Also, 
a constexpr function is more officially usable as a compile-time constant, so that 
you can use an expression with a constexpr function’s return value in various 
places where C++ needs a constant value to use (e.g., an array size declaration, 
some template situations, etc.). 

An inline function is also supposed to be optimized at run-time for non-constant 
arguments, and constexpr functions are implicitly inline functions. The code 
generation requirements of dynamic inlining are often more advanced that constant 
expression evaluation. 

Also, the limitations on how a constexpr function can be structured are a lot 
easier to code than the unrestricted nature of an inline function body. However, 
as a practical matter, the compile-time evaluation of expressions and the code 
generation for inlined expressions have a lot of overlap, so I expect C++ compilers 
will mostly try to do both on every type of function. 
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The inline keyword also serves a weird secondary purpose, by guaranteeing that 
there’s only one copy of the function. This means we can include header files with 
the full definition of that inline function anywhere we like, without getting a 
compiler error at link-time about multiple definitions. But this isn’t a performance 
optimization, and the linker feature of inline is almost the opposite of what we 
want in making a function inline, because we don’t want a real function to be 
called at all. 

if constexpr statements 

There is an alternative usage of constexpr in terms of “if” statement conditions 
(since C++17): 

   if constexpr(cond) 

This new syntax tags the condition as being amenable to computation at compile-
time. Hence, the compiler should optimize the if statement to a constant value, 
and it can then determine at compile-time which branch should be executed. So, 
there is a double speedup from: 

(a) the condition computation is removed at run-time, and 

(b) code size reduction from unexecuted “dead code” being removed. 

In fact, this determines at compile-time which code block will be parsed, so there 
are cases where you can avoid a compile-time error in templates by wrapping it 
inside an “if constexpr” check. This can be useful in compile-time situations 
such as template expansion, where you can prevent some expressions from being 
compiled, and also code bloat can be reduced. 

constinit variables 

The constinit specifier is somewhat like a hybrid declaration that is between 
the consteval specifier and classic static variables. The constinit specifier 
declares a variable that is static, with lifetime scope, that is initialized at compile-
time. 

A variable declared as constinit must be initialized, and cannot be modified (like 
“const”). However, the initializer needn’t be a “constant expression” although it 
must be able to be calculated at compile-time. 
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Huh? That makes no sense. Sure, it does in the world of C++ standards. A 
“constant expression” with only constant arithmetic is officially a subset of the set 
of expressions that can be calculated at compile-time. 

The best example is a call to a function that has one path where it’s constant, and 
another path where it’s not. The definition of “somefunc” has two paths: 

    int somefunc() 

    { 

        if (something) return 27; 

        else return some_random_number(); 

    } 

The “somefunc” function cannot be declared “const” or “constexpr” because 
it isn’t always a constant on all paths. 

However, if we’re using “somefunc” at program startup initialization, we can try: 

    constinit int s_myconst = somefunc(); 

Here, if we know that it will use the constant path for some reason, the initialization 
of “s_myconst” will go through the fixed path to get the compile-time constant 
value of 27, we can tell the compiler that by declaring the variable as constinit. 

Anyway, now that you’ve been forced to learn all that stuff, just forget it. You’ll 
rarely if ever be needing constinit. 

consteval functions 

Use consteval for functions that are always constant. A consteval function is 
strictly declared so that every invocation of the function must return a compile-time 
constant. 

The consteval keyword is a subset of constexpr functions (and its use also 
implies inline on a function). Although a constexpr function is constant if its 
arguments are constant, it can also return a dynamic return value for non-constant 
arguments. 

When would you use consteval versus constexpr functions? I mean, when 
you ask your boss to make you a cup of coffee, do you like to ask politely or do you 
issue commands? Supposedly constexpr is optional for the C++ compiler, 
whereas consteval is mandating compile-time evaluation. 
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Personally, I can’t see much difference in general usage, since the compiler will 
probably optimize a constexpr function at compile-time if it’s capable enough. 
Hence, for regular functions I don’t see much benefit to consteval rather 
than constexpr. There are some complicated places in C++ where it helps to 
guarantee a compile-time constant, such as reflexive types and other tricks in 
compile-time template usage. 

Templates 

C++ templates can be used for compile-time optimizations, rather than merely as 
a programming convenience for algorithm generality and interface improvement. 
By specializing templated code for a particular type or constant parameter, the effect 
is that the resulting code is more specific, giving the compiler an opportunity for 
better optimizations. 

For example, if we have vector and matrix classes, then rather than having our code 
dynamically check whether our precision is 32-bit float, or 8-bit integers, or some 
other low-level type, we can use templated versions of the vector and matrix classes. 
This generates different functions for each type of data. At the cost of some extra 
code space, we’ve given the compiler the chance to do a much better job of 
optimizing the code for the specific low-level data types. 

Going beyond just using template code to write the same algorithm for different 
types, there are various ways to optimize code that is templated to do more at 
compile-time: 

• Template class and function specializations 

• Constant template parameters 

• Compile-time conditional tests on types (e.g., sizeof, type traits, etc.) 

• if constexpr syntax 

• Variadic templates 

• Template Metaprogramming (TMP) techniques 

• SFINAE techniques 

Constants can be used to instantiate template code in a way that helps the 
compiler to optimize by evaluating constant expressions. Template parameters 
don’t need to be types, but can also be constant variables or numbers, such as the 
size of an array. Using a template in this way is as efficient as hard-coding the array 
size, which helps the compiler to know exactly what it can optimize, such as if the 
array size is used in any computations. 
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If you think you can do better than the compiler’s optimizer, remember that you 
can also override the generic template code. For example, you can instantiate your 
own specific version of a template class for a particular type. Similarly, you can 
provide a generic function declaration that instantiates a templated function with 
your explicit version. 

An alternative to specializing a version of a template class or function is to use 
compile-time tests inside the generic template code. For example, you can use 
conditional tests involving compile-time operations: 

• sizeof 

• typeid 

• std::is_same_v 

• if constexpr conditional test syntax 

Next level templating 

C++ templates are a very powerful programming mechanism. In fact, you can 
define entire projects as templates inside header files. To get the most out of 
template optimizations at compile-time, consider these methods: 

• Type traits 

• Variadic templates 

• SFINAE 

• Template Meta-Programming (TMP) 

Type traits are a generic feature of C++ (since C++11) that you can use to 
interrogate the type of a variable. They are declared in the <type_traits> header 
file and there are numerous ways that you can test the type of a variable. The above 
example std::is_same_v is one example usage. As another example, there 
is std::is_signed and std::is_unsigned to test whether it’s a signed or 
unsigned type. There’s also the std::is_pointer and std::is_array and 
various others. Combining type traits with “if constexpr” gives a powerful way 
to ensure templated code gets evaluated at compile-time, and to specialize blocks 
of code for particular types. 

Variadic templates are another way to level up your code and have been 
supported since C++11. These are variable-argument templates via the use of the 
ellipsis “...” operator in a template declaration. This allows templates to accept 
a variable number of parameters for instantiation. 
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SFINAE. Another optimization for advanced templating is to rely on SFINAE 
semantics. This refers to “Substitution Failure Is Not An Error” and means 
that template instantiation that fails should not itself trigger a compilation error 
that prevents execution. More specifically, if the compiler tries and fails to 
instantiate a template, but there’s another way to run it, such as a different 
overloaded function available, then the code should execute via the non-templated 
method. Relying on this capability in C++ not only avoids having compilation 
errors that block some advanced template usages, but can also be used to ensure 
compile-time calculations. However, although there are some good uses cases in 
making templates faster, SFINAE is an obscure programming technique that isn’t 
widely used in everyday C++ programming. 

Template Meta-Programming. Further optimization of templated code at 
compile-time is possible via the technique called “Template Meta-Programming” 
(TMP). Note that this refers to an unusual usage of templates in C++, where the 
idea goes beyond just using templates of code for different types (i.e., normal 
templating of classes). TMP is an advanced coding method that uses (misuses, 
perhaps) instantiation semantics of templates as a way of generating compile-time 
code, even for some conditional branches. However, this is an obscure method that 
is rarely needed, because most of the effects can be achieved via preprocessor 
macros, function inlining, and using “constexpr” in modern C++. 
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16. Pointer Arithmetic 

What is Pointer Arithmetic? 

Pointer arithmetic is a tricky C++ optimization that can be used to get rid of 
incremented variables in loops. Instead, a pointer can be incremented each loop 
iteration. This changes an array access “arr[i]” into a pointer access “*ptr” and 
is usually faster. 

What is pointer arithmetic? Arrays and pointers are buddies in C++ and there’s 
a way that mathematical arithmetic operators can work on both. Consider the 
declarations: 

    int arr[10]; 

    int *ptr; 

To start with, we can set the pointer at the array, and C++ allows us to use index 
notation on a pointer: 

    ptr = arr; 

    x = ptr[3]; 

Here, x will get the value of arr[3] via ptr[3]. The pointer and array are 
equivalent. Note that the “&” address-of operator can be optionally used here. We 
could have written “ptr=&arr” to copy the address, but it’s optional. 

C++ allows array index accesses on pointers with “ptr[3]” as above. We can also 
do this using “pointer arithmetic” with the “+” operator and the “*” pointer de-
reference operator: 

    x = *(ptr + 3);  // Same as ptr[3] 

The expression “ptr+3” is the address of the third element in the array 
(i.e., &arr[3]), and the “*” dereference operator gets the value pointed to by the 
pointer (i.e., arr[3]). 
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Why does this work? If ptr is pointing to the start of an integer, shouldn’t 
“ptr+3” be a weird address in the middle of an integer? 

No, because C++ does “pointer arithmetic” on pointers. Because “ptr” is an 
“int*” type pointer, the compiler knows to work on “int” data. With pointer 
arithmetic, the “+” operation adds a multiple of the bytes of the size of int types. 
So “ptr+1” is not the address 1 more than ptr, it’s actually 4 more than ptr for 
a 4-byte int (assuming 32-bit integers). And “ptr+3” is actually the address 
“ptr+12” in terms of bytes. 

Which Operators Do Pointer Arithmetic? Pointer arithmetic works with a 
number of arithmetic operators: 

• Increment — ptr++ adds 1*size bytes to ptr. 

• Decrement — ptr-- subtracts 1*size bytes from ptr. 

• Addition — ptr + n adds n*size bytes. 

• Subtraction — ptr-n subtracts n*size bytes. 

• Assign-Add — ptr += n adds n*size bytes to ptr. 

• Assign-Subtract — ptr -=n subtracts n*size bytes from ptr. 

Note that there’s no pointer arithmetic multiplication or division. Actually, I was 
told that C++37 was going to have a C++ pointer multiplication operator that 
scanned down an array doing paired multiplications, adding them up as it went, and 
all in one CPU cycle, but then someone woke me up. 

Pointer Comparisons: You can also compare pointers, which isn’t really doing 
any special pointer arithmetic, but works as normal comparisons on their addresses: 

• Equality tests — ptr1 == ptr2 or ptr1 != ptr2 

• Less than — ptr1 < ptr2 or ptr1 <= ptr2 

• Greater than — ptr2 > ptr2 or ptr1 >= ptr2 

Segmented Memory Model Pointer Comparisons: Note that there’s a weird 
portability gotcha in relative pointer comparisons (i.e., less-than or greater-than). 
They’re only guaranteed to work in very limited scenarios by the C++ standard, 
such as when the pointers are both operating over the same array data. 
Programmers tend to think of the address space as one huge contiguous range of 
addresses, where you can compare all of the pointers in the program against each 
other, and make some coding assumptions based on that. However, there are 
architectures where pointer addressing is more complicated, such as where pointers 
are a multi-part number pointing into different memory banks with a more 
convoluted segmented addressing scheme. For example, pointers to allocated heap 
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memory might be separate from the pointers to global static data, and not easily 
comparable. 

Pointer Differences: You can subtract two pointers using the normal “-” 
subtraction operator. The result is not the number of bytes between them, but the 
number of objects. Hence, the two pointers must be of the same type (i.e., pointing 
to the same type of object). Consider this code: 

    int arr[10]; 

    int *ptr1 = &arr[1]; 

    int *ptr2 = &arr[2]; 

    int diff = ptr2 - ptr1; 

The value of “diff” should be 1 in C++ (rather than 4 bytes), because the two 
pointers are one element apart (i.e.,1 integer difference). Note that “diff” is a 
signed integer here, and the value of subtracting two pointers can be negative (e.g., 
“ptr1-ptr2” above would be “-1” instead). Technically, the official type of the 
difference between two pointers is “std::ptrdiff_t” which is an 
implementation-specific integral signed type that you can use if you are the sort of 
person who alphabetizes their pantry. 

Adding Pointers Fails: Note that adding two pointers with “ptr1 + ptr2” is 
meaningless and usually a compilation error. Also invalid are weird things like the 
“+=” or “-=” operators on two pointers. Even though “-” is valid on two pointers, 
“ptr1-=ptr2” fails to compile because the result of “ptr1-ptr2” is a non-
pointer type. 

Char Star Pointers (Size 1 Byte): Note that if you want to avoid pointer 
arithmetic, and see the actual numeric value of addresses, you can use a “char*” 
type pointer (or “unsigned char*”). Since sizeof(char) is 1 byte, then all 
of the pointer arithmetic will just add the expected number of bytes (e.g., ptr++ on 
a char* pointer adds 1 to the address). If you really want to know the actual 
number of bytes between two pointers, then cast them to “char*” type before 
doing the pointer subtraction. 

    int diffbytes = (char*)ptr2 - (char*)ptr1; 

Stride of an Array. A useful piece of terminology when processing lots of data in 
memory is the “stride” of an array. This means the number of bytes between 
adjacent array elements. We can try to compute it as follows: 

    int arr[100]; 

    int stride = &arr[2] - &arr[1];  // Wrong 
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Nope, that’s a fail. This isn’t the stride, because it did pointer arithmetic. The 
addresses of array elements are really pointers, so the stride variable above is always 
1 (the adjacent elements are 1 apart in pointer arithmetic). We need to convert 
to char pointers to get the stride in bytes. 

    int arr[100]; 

    int stride = (char*)&arr[2] - (char*)&arr[1]; 

Can’t we just use sizeof to get the stride? Isn’t the stride above going to equal 4, 
which is sizeof(int)? Yes, in the example above the use of sizeof is correct, 
but no, that is not true in general. The stride will often equal the element size, but 
may be larger. For a simply packed array of integers or other simple types, the stride 
is almost certainly the size of the array element type. But this is not always true, 
such as if it’s an array of a larger object with an awkward size that requires padding 
bytes for address alignment considerations. 

Loop Unrolling Stride. The term “stride” also has a secondary meaning when 
talking about array processing with loop unrolling. The stride of an unrolled loop 
is how long of a segment is being processed in each section of loop unrolling code. 
For example, if a loop is unrolled with AVX-2’s 256-bit registers (equals 8 32-
bit floats), then the stride when discussed in the literature is either 8 floats or 
8x4=32 bytes. 

Void Pointer Arithmetic Fails: Note also that pointer arithmetic on a generic 
“void*” pointer should be a compile error, because it points to unknown size 
objects. Some C++ compilers will allow pointer arithmetic on void pointers with a 
warning, and pretend it’s a “char*” pointer instead. 

Finally, I don’t think you can increment a “function pointer” in valid pointer 
arithmetic, but you’re welcome to try. 

Pointers and Arrays 

There is a close relationship in C++ between arrays and pointers. Array names are, 
in many ways, just pointers to the first element in the array. The array indexing 
operation is identical to a pointer expression involving address arithmetic. The 
following algebraic identities hold: 

    array[exp] == *(array + exp) 

    &array[exp] == array + exp 
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These relationships have a number of consequences. First, the commutativity 
of + means that exp1[exp2] is equivalent to exp2[exp1], which leads to weird 
syntax tricks like “n[ptr]” instead of “ptr[n]”. 

Another consequence of this duality is that, in many situations, pointers can be used 
instead of arrays. For example, it is legal to apply the array indexing operator (i.e., 
square brackets) to a pointer. For example: 

    x = ptr[3];  

Just like arr[3], this sets x to equal the third element away from ptr, 
where ptr is pointing into an array. 

Array Function Parameters: The array and function relationship is complicated 
when an array is a function parameter. When an array is passed to a function, the 
address of the first element of the array is passed. An array formal parameter is 
implemented as a pointer variable (i.e., a pointer pointing to the start of the array). 

This explains why arrays are passed by reference, not by value. A local copy of the 
array is not used inside the function. Instead, a pointer to the original array is used. 
Hence, any change to an element of the local array variable is actually changing the 
original array (i.e., pass-by-reference instead of pass-by-value). 

The differences between pointers and arrays are few. The main one is that an array 
name is not a variable, whereas a pointer is. Hence, an ordinary array name declared 
as a local variable cannot be assigned to, or incremented, whereas a local pointer 
variable can be. An array is similar to a constant pointer (e.g., int *const ptr). 
Note that this is untrue when the array is a function parameter, when it can be 
incremented or modified. 

There are also the differences between pointers and arrays in relation to 
initializations. Consider the two initializations: 

   char *p = "hello"; 

   char arr[100] = "hello"; 

For the pointer p, the string “hello” is stored in separate memory. Only the 
required number of bytes are allocated (six, because of the extra character zero 
added by the compiler to terminate the string). For the character array “arr”, 100 
bytes are allocated, but only the first six are filled. 
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Pointer Arithmetic Loop Optimizations 

The main way that we use pointer arithmetic for optimization is to change a loop 
over an array into loop pointer arithmetic. Note that this is primarily a sequential 
code optimization, and does not change anything in terms of vectorization for 
parallel execution. 

Pointer arithmetic is mainly used to get rid of an incrementer variable in sequential 
code. Here’s a vector dot product with basic incremented loop variable i++ and 
array index syntax v1[i] used inside the loop: 

    float aussie_vecdot_basic(float v1[], float v2[], int n) 

    { 

        // Basic vector dot product 

        float sum = 0.0f; 

        for (int i = 0; i < n; i++) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

And here’s the same code when converted to pointer arithmetic: 

    float aussie_vecdot_ptr(float v1[], float v2[], int n) 

    { 

        // Pointer arithmetic vector dot product 

        float sum = 0.0f; 

        float* endv1 = v1 + n;  // v1 plus n*4 bytes 

        for (; v1 < endv1; v1++,v2++) { 

                sum += (*v1) * (*v2); 

        } 

        return sum; 

    } 

How does this work? We got rid of the temporary variable “i” by using pointer 
arithmetic “*v1” instead of array indices “v1[i]”. We are also using the function 
parameters “v1” and “v2” as temporary local variables, as permitted in C++, so 
we don’t need an extra temporary pointer variable. 

The way this works with pointer arithmetic is v1 and v2 are treated as pointers, 
which works due to the near-equivalence of pointers and arrays in C++. Rather 
than using an array index “i” we increment both these pointer-array variables: 

    v1++,v2++ 
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These for loop incrementers “v1++” and “v2++” are both adding 4 bytes (the size 
of a 32-bit float) to the pointers. Also note these two increment statements are 
separated by the C++ comma operator, not by a semicolon. 

The “endv1” end marker is calculated as the address of “v1[0]” plus “n*4” bytes, 
because the “+” operator in “v1+n” is pointer arithmetic addition, which is auto-
scaled by the size of the pointed-to object (i.e., 4 bytes for 32-bit float here), rather 
than normal integer addition. 

Note that a further micro-optimization is possible. We can change the less-than test 
(“v1 < endv1”) to an inequality test (“v1 != endv1”), because equality tests 
are slightly faster than less-than tests. Since this test is effectively inside the loop 
and done every iteration, this might be worth doing. 

The trade-off is safety: it’ll become an infinite loop if you get the pointer math 
slightly wrong, but hey, your code has no bugs, right? 

Smart Pointers 

Smart pointers are a programming idiom to make C++ pointers safer. They are not 
a speed optimization, and in fact, they are a wrapper that adds extra logic around 
the use of a raw pointer, and will be marginally slower. However, they avoid many 
C++ pointer pitfalls, thereby improving reliability, and will reduce total allocated 
memory usage by avoiding memory leaks. There may even be an indirect benefit to 
execution speed if overall memory management is improved. 

Programmers have been defining their own smart pointer wrapper classes for 
decades, but there is now standard support for the idea in the C++ library. In the 
typical idiom, a smart pointer tracks the creation and destruction of the object it 
points to, which ensures that the destructor is called. This helps avoid “memory 
leaks” in standard C++ pointers where an object is allocated with “new”, but is 
never deallocated by “delete”. 

The C++ standard libraries have various templates to support smart pointers, 
mostly since C++11, so they are longstanding features. 

• std::shared_ptr 

• std::unique_ptr 

• std::weak_ptr 
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std::shared_ptr is a reference-counted shared pointer implementation. The 
idea is that it tracks the total number of pointers to an object, and then automatically 
destroys the object whenever there’s no more pointers to it. This occurs when the 
last of the “shared_ptr” objects is itself destroyed, and then the reference count 
for the underlying object is zero. 

std::unique_ptr is a one-to-one mapping of a smart pointer to an object. 
Whenever the unique_ptr object is destroyed (e.g., goes out of scope as a local 
variable), then both the smart pointer and its underlying object are destroyed or 
otherwise cleaned up. The unique_ptr object can refer to a single object 
allocated by “new” or a single array-of-objects allocated by the “new[]” operator. 

std::weak_ptr is a less commonly used type of smart pointer that has relevance 
to std::shared_ptr in some complicated scenarios. Usually, you should choose 
either of std::unique_ptr or std::shared_ptr, depending on how many 
pointers will point to the underlying object. 

Pointers vs References 

Overall, pointers are a good and bad feature of C++. They are low-level variables 
that allow efficient processing of memory addresses, so we can code some very fast 
methods with pointers. They allow us to get very close to the machine. 

On the downside, there are pointer pitfalls. Pointers trip up novices and 
experienced programmers alike. There is an immense list of common faults with 
pointer manipulation, and coding problems with pointers and memory 
management are probably half of the causes of bugs in C++ (at least). There are 
some tools that mitigate against pointer problems (e.g., Linux Valgrind) but it is a 
never-ending battle against them. 

Pointers and arrays were implemented very similarly, and came from the earliest 
designs of the original C language. Basically, arrays are treated as a specific type of 
pointer, with various differences depending on whether they are variables or 
function parameters. 

Then came C++ to the rescue. References arrived with the new-fangled 
programming language (cleverly named as “C++”) and were thoughtfully designed 
as a type of safe pointer that cannot be null, but is just as efficient as a pointer 
because the constraints on references are enforced at compile-time. 
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C++ allows two ways to indirectly refer to an object without needing to create a 
whole new copy: pointers and references. The syntax is either “*” or “&” for their 
declarations. 

    MyVector *myptr = &mv;  // Pointer to mv object 

    MyVector &myref = mv;   // Reference to mv object 

Pointers and references are more efficient than fully spinning up a whole new copy 
of the object, especially when the underlying object is a complicated object. And 
when you have a function call, you should definitely avoid sending in a whole object. 

    void processit(MyVector v)  // Slow 

    { 

        // .... 

    } 

This is inefficient because the whole MyVector object will get copied, via whatever 
copy constructor you have defined, which is slow. And if you haven’t defined a 
copy constructor, then the compiler uses default bitwise copy of a structure, which 
is not only slow, but also rarely what you want, and often a bug. 

The faster reference version is to use a “const” reference (or non-const if you’re 
modifying it inside the function): 

    void processit(const MyVector & v) // Reference param 

    { 

        // .... 

    } 

The pointer version is: 

    void processit(MyVector * v)  // Pointer param 

    { 

        // .... 

    } 

Which is faster in C++ — pointers or references? The short answer of “not any 
difference” is the general view, because references are implemented as pointers by 
the compiler behind the scenes. The two functions above are not going to be 
significantly different in terms of speed. 

The slightly longer answer is that references can be faster because there’s no null 
case. A reference must always be referring to an object for the duration of its scope.  
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The C++ compiler ensures that references cannot occur without an object: 

    MyVector &v;          // Cannot do this 

    MyVector &v = NULL;   // Nor this 

    MyVector &v = 0;      // Nor this 

A reference must be initialized from an object, and you cannot set references equal 
to pointers, because you actually have to de-reference the pointer with the “*” 
operator, which crashes if it’s a null pointer: 

    MyVector &v = myptr;  // Disallowed 

    MyVector &v = *myptr; // Works if non-null 

There’s no way in C++ to get a zero value into a reference variable (we hope). For 
example, the address-of operator (&) applied to a reference variable returns the 
address of the referenced object, not the memory location of the reference itself. 
Hence, references are always referring to something and they cannot be equivalent 
to the null pointer. 

References are slightly faster: The guarantee of an object for a reference fixes all 
those null pointer core dumps, and also relieves the programmer of the burden of 
testing for null pointers. The compiler does this guarantee for references at compile-
time, so there’s no hidden null check being done by the compiler at run-time, 
making it efficient. So, there’s a minor speed improvement from using references, 
by not having to add safety checks for “ptr!=NULL” throughout the function call 
hierarchy. 

Pointers can be better than references if you need a “null” situation to occur. For 
example, you’re processing an object that may or may not exist, and you need the 
pointer to be allowed to be “NULL” if there’s no object. This should occur rarely, 
and references should be preferred in many cases. 

And finally, references aren’t very useful when you’re trying to scan through the 
data in vectors, matrices, or tensors in an AI engine. You can’t do pointer arithmetic 
on a reference in C++. 
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17. Algorithm Speedups 

Algorithm Optimization Techniques 

This chapter presents some of the theory of the general techniques for optimizing 
algorithms. Changing the underlying algorithms used by the program is often the 
only real way to gain a large speed increase. In particular, the algorithms and data 
structures used can often be modified to give a significant speed increase. Is there 
a better way to do what your program does? Is it doing too much unnecessary 
calculation?  

Although much depends on the programmer’s ingenuity, there are some common 
techniques for improving performance of algorithms. 

• Parallelization and vectorization 

• Precomputation (save time by using space) 

• Recomputation (save space by using time) 

• Caching and computation reuse 

• Greedy algorithms (immediate computation) 

• Skipping algorithms 

• Arithmetic strength reduction 

• Integer arithmetic 

• Change recursion to loops 

• Incremental algorithms 

• Choose a better data structure 

The idea of “skipping” computations also has various sub-methods: 

• Lazy algorithms (delay computation until needed) 

• Common case first 

• Simple case first 

• Approximate tests first 

 

 



David Spuler                                               184 
 

Lookup Table Precomputation 

Lookup tables are so widely used in AI engines that they’re usually abbreviated as 
LUTs. The aim is to precompute results and replace frequently called costly 
function evaluations with table lookup (i.e., array references). Note that this use of 
precalculation is only worthwhile if some calculations are repeated and computing 
the same result. 

As an example, we can replace a call to “sqrtf” with a precalculated table of square 
roots. In the subsequent calculations where square root is needed, a call to 
the sqrtf function is replaced by a table lookup. 

The precalculation uses two separate functions: one to perform the precalculation, 
and another to access the values by table lookup. The precalculate function must 
be called once via a global initialization routine for the class. Alternatively, every 
call to the square_root function could self-check a static Boolean flag indicating 
whether the values have been precalculated yet, and call the precalculate function if 
not, but this is needlessly slower for every access. 

Even more efficient is to use “offline precomputation” before your program even 
runs. This is a more efficient method whereby the data is not precalculated during 
initialization of the program, but is done earlier in an “offline” mode (e.g., as part 
of your build process). For example, the precomputed results are either stored to a 
data file, or converted to a C++ source file that is linked. 

Another good example of precalculation is the Boolean functions on characters 
(e.g. isupper). To improve performance, it is possible to implemented these 
functions as a precomputed array of 256 bool values, or 256 bytes with 0 
if isupper is false, and 1 if isupper is true. Then isupper is evaluated by 
indexing the character into the precomputed table: 

    #define isupper(ch) ( precomputed_array[ch] ) 

In fact, many C++ compilers implement isupper and other functions 
in <ctype.h> as a table lookup over the 256 characters (plus an extra one 
for EOF), with a precalculated single bit flag per function — that is, one bit 
indicating isupper, another bit for islower, etc. 
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Lazy Evaluation 

The idea of lazy evaluation is a slight amendment to precalculation or data structure 
augmentation. Full precomputation during program startup can be inefficient when 
only some of the values are needed. 

Lazy evaluation works in a “lazy” manner, by only doing work when asked. Instead 
of precalculating every result, results are calculated only as needed. To use this 
method, some way is needed of indicating whether a result is already in the table.  

When seeking a result, it is necessary to check if the required value is already present. 
If so, table lookup is used to get the result. If not, the value must be calculated, 
stored in the table and that entry marked as present. 

The precomputation of sqrtf can be modified to become lazy evaluation by 
adding another array of Boolean flags, indicating which of the square roots have 
been computed. When calculating a square root, the function checks if it has been 
computed, and calculates it if not. 

    float square_root_lazy_eval(int n) 

    { 

        static float sqrt_table[NUM_PREC + 1]; // values 

        static bool precalc[NUM_PREC + 1];     // flags 

 

        if (!precalc[n]) { // precalculated? 

            sqrt_table[n] = sqrtf((float)n); // real sqrt 

            precalc[n] = true; // Mark as computed 

        } 

        return sqrt_table[n]; 

    } 

The use of lazy evaluation is slower than complete precalculation if all of the values 
are eventually calculated, because of the overhead of checking whether calculation 
is needed. Also, there’s only an efficiency gain for values that are calculated twice 
or more.  

However, lazy evaluation can make the program faster overall if not all calculations 
are needed, but some are needed many times. Any unnecessary calculations are 
avoided. How lazy! 
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Source Code Precomputation 

The examples of the precomputation of square roots in the previous two sections 
are not particularly efficient because they must still call the sqrtf function a 
number of times. A far more efficient alternative is to use C++’s compile-time 
initialization to set up the precomputed sqrt_table array inside the C++ source. 
Hence, the square_root function becomes a lookup into an array variable as follows. 
Note that the array is “static” so that the initialization occurs at compile-time. 

    float square_root_precalc(int n) 

    { 

        const int NUM_PRECALC = 100; // Precalculate to 100 

        static float sqrt_table[] = { 

          0.000000f, 1.000000f, 1.414214f, 1.732051f, 

          2.000000f, 2.236068f, 2.449490f, 2.645751f, 

          //... etc ..... 

        }; 

        if (n >= NUM_PRECALC) return sqrtf((float)n); 

        return sqrt_table[n]; 

    } 

The simplest way to produce the values for the precomputed array is to write 
another program to produce them. Once the values are produced, this program 
could be discarded, or it could be left in the build process. The following program 
was used to produce the declaration of sqrt_table used in the square_root 
function given above. The output from the following program was copy-pasted into 
the source code for the program above. 

    void generate_sqrt_table() 

    { 

        const int NUM = 100; // Precalculate to 100 

        printf("static float sqrt_table[] = {\n"); 

        for (int i = 0; i < NUM; i++) { 

            printf("%ff", sqrtf((float)i)); 

            if (i + 1 < NUM) 

                printf(", "); // comma after all but last 

            if (i % 4 == 3 && i + 1 < NUM) 

                printf("\n"); // newline every 4 numbers 

        } 

        printf("\n};\n"); // finish off declaration 

    } 

Source code precomputation should always be more efficient than lazy evaluation 
and run-time precomputation. However, source code precomputation is only 
applicable when the optimized function can be computed at compile-time (e.g., any 
“constexpr” function). If the computation involves variables with values known 
only at run-time, either lazy evaluation or run-time precomputation may be needed. 



187                                       C++ Low Latency 
 

Incremental Algorithms 

It is often easier to modify what has already been done than to start from scratch. 
This idea can be used to write faster algorithms. However, changing an existing 
algorithm to incremental calculations may require a redesign of the algorithm. 

A simple example of an incremental algorithm is counting the number of symbols 
in a hash table. The non-incremental way to count them is to traverse the hash table, 
counting the number of entries along each hashed chain. The incremental method 
is to keeping a running count — increment it when a symbol is inserted; decrement 
it when a symbol is deleted. The incremental method is better if the count will be 
required many times. If the count is not then required, there has been a small 
amount of unnecessary overhead. 

Another good example appears in graphics animation when managing the buffers. 
When displaying a new screen, it is usually more efficient to change the existing 
screen buffer than to redraw the whole screen. The idea is to set only those pixels 
that need to be changed. 

For another example, a chess-playing program uses a game tree and the minimax 
algorithm with a static evaluation function. This function usually analyses the 
material balance (i.e., how many pieces each side has), along with other chess 
strategy factors. A simple but inefficient method of computing the material value 
of a position is to add the values of each piece on the 64 squares. The efficient 
incremental algorithm is to subtract the value of the piece from a running count 
whenever any piece is captured by the opponent. 

Common Case First 

When testing for a number of different conditions, it is best to test the most 
common case first. If it is true, the other tests are not executed. When using 
multiple if-else-if statements, place the common case first. For example, 
consider the binary search function: 

    if (key > a[i]) { 

        // ... 

    } 

    else if (key < a[i]) { 

        // ... 

    } 

    else { // equality 

        // ... 

    } 
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Equality is least likely of all the three conditions, and hence it goes last. Greater-
than and less-than are more common, so they go first. 

The idea of common case first also appears in Boolean expressions using && or ||. 
The short-circuiting of these operators makes them very efficient when the 
common case is first. For ||, the most likely condition should be placed first (i.e., 
most likely to be true). For &&, the most unlikely condition should be placed first 
(i.e., most likely to be false). 

Simple Case First 

This method is similar to common case first — the idea is to test the simplest 
condition first. More complicated and time-consuming computations can be 
avoided if the first test succeeds (or fails, depending on the context). This idea 
appears in two main situations: 

• if-if construct (nested if statements), and 

• logical operators (&& and ||). 

The simplest test should be the first of a pair of nested if statements and should 
also be the first operand of a && or || operator. In the examples below, the sub-
expression “x!=0” is evaluated first because it is the simplest and hence the least 
expensive to evaluate. This is the nested-if example: 

    if (x != 0) { 

        if (expensive_fn(x) != 0) { 

            // ... 

        } 

    } 

This is the && short-circuiting method: 

    if (x != 0 && expensive_fn(x) != 0) { 

        // ... 

    } 

Special Solution of Simple cases 

In addition to putting a simple case first, it can also be efficient to solve simple cases 
differently to the general case. When solving a problem, simple cases can often be 
solved by specially designed fast functions.  



189                                       C++ Low Latency 
 

These “special solutions” can involve table lookup of precalculated values (e.g., 
storing the first ten factorials in an array) or just a fast algorithm for small cases (e.g. 
sorting less than five numbers quickly). 

In general, the special solution of simple cases will give some speed increase if the 
simple cases are fairly common. The advantage of simple case precalculation over 
full precalculation is flexibility — it is not limited to those values that can be stored 
in a fixed size table. 

The use of table lookup for simple cases for the factorial function is shown below. 
The use of the method here gives speed increase for all cases, not just the simple 
ones, because the recursive definition of factorial eventually breaks the problem 
down to a simple case. 

    int factorial_precalc(int n) 

    { 

        const int NUM_PRECALC = 5; // How many 

        static int s_precalc[NUM_PRECALC + 1] =  

            { 1, 1, 2, 6, 24, 120 }; 

 

        if (n <= NUM_PRECALC) 

            return s_precalc[n]; 

        else 

            return n * factorial_precalc(n - 1); 

    } 

Approximate Tests 

Many algorithms can be improved by avoiding complex calculations with a fast 
preliminary test that is often successful. This is a special type of common and simple 
case optimization combined.  

This method is only worthwhile when avoiding the complicated test is highly 
probable; if avoiding it is unlikely, the extra simple test reduces efficiency because 
it adds (slightly) to the run-time cost. 

Zero skipping. In an AI engine, a common example is “zero skipping.” A low-
cost test of a weight against zero can avoid the complexity of computing vector and 
matrix operations with that weight. 

Bounding Sphere Tests in Ray Tracing. As an example in 3D graphics, to 
implement a ray tracing algorithm for graphical image rendering, it is necessary to 
determine whether a ray strikes an object.  
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Since the objects are often complex and more often than not the ray will miss an 
object by a large amount of space, a simple test can be used to quickly identify rays 
that are close enough to the object to intersect with it.  

A good simple test is to determine if the ray intersects with the bounding sphere of 
an object, as it is relatively efficient to determine this. If the ray does intersect the 
sphere, the more expensive tests are applied to determine if the ray intersects with 
the object. If the ray does not intersect with the sphere, the cost of the more 
expensive tests has been avoided. Interestingly, the simplicity of testing the 
intersection of a ray with a sphere helps explain why there are so many ray-traced 
images of spherical objects. 

Bounding-box 2D collision detection. The similar idea of a bounding rectangle 
is useful for collision detection in coding 2D arcade games. Collision detection 
usually involves testing many pairs of objects in a two-dimensional setting, and the 
tests are complicated because of the different shapes of the objects. The more 
complicated tests can be avoided by examining whether the bounding rectangles of 
each object are intersecting. If they do intersect, then a closer examination of 
whether the objects have pixels that overlap is carried out. 

Rectangle Shapes. For yet another example of using a simple test to avoid 
complicated tests, consider the problem of a GUI-based drawing program. 
Typically, the user can select a vertex (e.g., the end of a line segment) by clicking 
“close” to the vertex. In other words, the user must click the mouse within a 
specified radius of the point. Hence, when the mouse is clicked, the program must 
compare the mouse location with all the currently active vertices. The obvious 
method is to use the distance formula for two points and apply the following test 
on the x and y coordinates of the mouse and all points: 

   const float DISTANCE = 2.0f; 

   float diffx = xMouse - xPoint; 

   float diffy = yMouse - yPoint; 

   float distance = sqrtf( diffx * diffx + diffy * diffy); 

   if (distance <= DISTANCE) { 

        // clicked! ... 

   } 

Firstly, the efficiency of this test can be improved simply by avoiding the calculation 
of the square root. Squaring both sides of the equation gives the equivalent test: 

   float distance_squared = diffx * diffx + diffy * diffy; 

   if (distance_squared <= DISTANCE * DISTANCE) { 

        // clicked! ... 

   } 
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However, the multiplications involved in computing the squares of the two sub-
expressions on the left are quite expensive, although the square on the right-hand 
side will be a compile-time constant. A simple test can be used to avoid the 
expensive multiplications in most cases. If the difference between either the x or 
the y coordinates is greater than DISTANCE, then the points cannot be close 
enough. Although the cost of these tests is quite high because the absolute value 
for the difference must be found, it should still cost less than two multiplications, 
and will be more efficient if there are many widely spaced points to be tested. The 
code using this idea is: 

    bool check_point_clicked(int xm, int ym, int xp, int yp) 

    { 

        const float DISTANCE = 2.0f; 

        int xd = xp >= xm ? xp - xm : xm - xp; 

        if (xd > DISTANCE) 

            return false; 

        int yd = yp >= ym ? yp - ym : ym - yp; 

        if (yd > DISTANCE) 

            return false; 

        return xd * xd + yd * yd <= DISTANCE * DISTANCE; 

    } 

Of course, algorithm improvements are even more effective. The best way of 
improving the efficiency of this program is to avoid the need for multiplications 
entirely, by changing the program specifications (!) so that the definition of clicking 
“close enough” to a vertex with a mouse refers to clicking within a square around 
the point, instead of a circle. Squares don’t need multiplication. 

Augmenting Data Structures 

An interesting type of caching is where the data is stored inside the main data 
structure, rather than in a separate cache. Instead of recalculating derivative data 
every time you need it, a faster way is to store the data in the data structure. This is 
a form of caching that saves the time of recalculation, which need be done only 
once. If the data ever changes, the calculations must be redone and stored again. 
This method works best with unchanging data, but can tolerate modifications. 

As an example of augmentation, consider a struct defined to represent a line 
segment (e.g., in a CAD drawing program). The struct contains four fields, for the 
x and y coordinates of the start and end points: 

    struct line_segment { 

        int x1, y1; // Start point 

        int x2, y2; // End point 

    }; 
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Consider the computation of the length of the line segment, using: 

    float flen = sqrtf((y2 - y1) * (y2 - y1)  

                     + (x2 - x1) * (x2 - x1)); 

If the length is a common calculation, it can be beneficial to cache the length of the 
line segment as an extra field in the struct: 

    struct line_segment { 

        int x1, y1; // Start point 

        int x2, y2; // End point 

        float length; // Length of line segment 

    }; 

Whenever this length is needed during calculation it is immediately available as a 
field member. However, it is important to be careful that there is no consistency 
problem (where the length field is not the true length of the line segment). The 
main danger is that the length field won’t be recalculated every time one of the 
other fields change. 
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18. Memory Optimizations 

Memory Reduction in C++ 

There are many general techniques for reducing the memory requirements of a 
C++ program. These techniques herein aim to reduce memory usage of a program 
so that: 

(a) your C++ does not waste too much time on memory management 
activity, such as allocating too much memory, and 

(b) your C++ code can execute on a low-memory platform, such as an IoT 
embedded device. 

In these days of cheap gigabytes of memory in every PC, memory reduction 
techniques are perhaps not as important as those for increasing speed. However, 
there are certainly situations when reducing space requirements is far more 
important than increasing the speed of a program. This section discusses a number 
of general techniques for reducing C++ memory requirements. 

Unfortunately, reducing space requirements can also lead to loss of speed. There is 
often a trade-off between space efficiency and time efficiency. Every C++ program 
uses memory for a number of different purposes, and each of these areas needs to 
be attacked separately. The memory usage of the program can be divided into the 
following memory sections: 

• Executable instructions 

• Static storage 

• Stack storage 

• Heap storage 

The executable instructions for a program are usually stored in one contiguous 
block of memory. Static storage refers to memory used by global and 
local static variables, string constants and (possibly) floating-point constants. 
Stack storage refers to the dynamic storage of non-static local variables.  
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Heap storage refers to the memory that is dynamically allocated using the new and 
delete operators and the malloc/calloc/free standard library functions. 

The memory requirements for the executable instructions are largely independent 
of the other memory areas, whereas the techniques for reducing the memory 
required for the other three areas are often similar. However, care must be taken 
that applying a technique to reduce data space does not increase the amount of 
C++ code too greatly, thus increasing the executable size. 

Compact Data Representation 

Different algorithms may store data differently and thereby reduce memory 
requirements. There are many ways to represent data, and all have varying space 
usage. For example, storing all the primes less than 1000 can be done with a list of 
integers, a list of the incremental differences between successive primes, or a bit 
vector with one bit for each integer up to 1000. 

Different data structures. The program should be examined to determine if a 
large space reduction can be achieved by changing to different data structures. For 
example, the program could use arrays instead of linked lists or binary trees to avoid 
the extra space due to pointer storage. However, this also wastes more space if the 
array is not full, and it is even better to use dynamic arrays, which do not waste any 
storage, as exactly the right amount of memory is allocated. Unfortunately, using 
different data structures can sometimes reduce the time-efficiency of programs. 

Data compression. Compressing data can reduce space requirements when large 
amounts of data are involved. Hmm, let’s pause for a moment and try to think of 
an example application with lots of data. Just jump in whenever you’re ready. 

Billions or trillions of weights in an LLM are a good candidate. Model compression 
is the theoretical term and involves either using smaller data sizes (e.g., 8-bit integer 
weights instead of 32-bit float data) or “pruning” of weights we don’t need. More 
generally, data compression algorithms have been used in research on AI models, 
such as sparsity, run-length encoding and Huffman encoding. 

Proceduralization. Another data representation technique is to use a function to 
represent data. Instead of a list of the first 1,000 primes, you could create an 
“is_prime” function that contains a big C++ switch statement, with all the 
primes as case values, which return true. You could also write a piece of code to 
create this source code automatically. 
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Recomputation. Another example of proceduralization, consider the storage of 
several images generated by a fractal algorithm: the simplest method of storing the 
images is to store them as large image files. But a much more space-efficient method 
is simply to store the values of any arguments passed to the function creating the 
fractal images. This way, the images can be recreated by calling the fractal generation 
function with the correct arguments.  

The only space used is a small number of values containing the arguments and the 
code instructions for the function. However, the recalculation of an image by this 
method is extremely time-inefficient. 

Reducing Data Size 

There are many techniques for reducing the size of program data. These techniques 
apply to all three types of memory — static, stack and heap storage. In some cases, 
a method may increase the memory storage in one area to decrease the memory 
usage in another, which is valid only if the total storage requirements decrease. 

Use char arrays not std::string. The use of std::string is very 
convenient, but if your program has many strings, the extra storage used by 
the string objects can add up. Consider managing your own raw char arrays as 
C-style strings if you really need the space. 

Avoid max-size arrays or buffers. When using an array data structure or buffer, 
there is temptation to be lazy and just make it bigger than it will need to be. Avoid 
this temptation and optimize the memory usage properly. Change an oversize array 
into a dynamically allocated array, if size can be determined easily at runtime. 

Smart buffers or smart array classes. An alternative to using an oversize array or 
buffer is to create “smart” classes that manage this, by automatically extending the 
array or buffer if more elements are needed. The std::vector class is a good 
way to do this. 

Bit vectors. These can be used where information can be reduced to a single 
Boolean value, such as bit flags or masks. The use of bit vectors is very compact in 
terms of space, and there are standard C++ libraries to implement these efficiently. 

Unions. When using a lot of structures, space can be reduced by overlaying the 
data fields. This can only be done if the fields to be overlayed are mutually exclusive 
(i.e., they never have active data in them at the same time). There is a special C++ 
data type for this purpose: the union. 
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Linearize multi-dimensional dynamic arrays. Use the simpler and smaller size 
of a one-dimensional array, with the two-dimensional structure mapped onto it with 
index calculations. This adds more runtime cost, but saves space over multiple 
levels of dynamic array allocations. 

Reusing space. One way to conserve memory is to reuse the space used by a 
variable. The union data type is an example of this general idea, and another is 
reusing variables for different purposes. For example, rather than letting several 
functions each have a local temporary buffer, they could all use the same global 
variable (although this is a very dangerous practice). As another example, if a 
program uses two similar arrays, examine whether the two arrays can share the same 
storage (possibly as a union). Note that I don’t recommend any of these 
approaches: too dangerous! 

Small data types: short, char. Instead of using arrays of int, use arrays 
of short, char or unsigned char. There is no problem with this method, 
provided large integer values are not being stored (e.g., larger than 127 for char, 
or larger than 255 for unsigned char). This technique is also worthwhile when 
applied to int fields in objects although alignment restrictions may limit the 
improvement — use the sizeof operator to determine if the size of the object has 
been reduced. Smaller local variables could also be declared as a smaller type, but 
this may increase the executable size due to type conversions. Note that speed can 
be compromised by using smaller data types because of the type conversions that 
often result. Similarly, use float instead of double, where the greater precision 
of results is not important (e.g., an AI model). 

Bit-fields in objects. When storing small integers in objects or structures, there is 
a way to specify exactly the number of bits required. These types are called “bit-
fields” and can only be used for fields inside objects, structures or unions. You 
cannot declare a local variable with a bit-field type. When using bit-fields, small 
integers or Boolean flags are automatically packed into a struct or union. This 
reduces storage requirements significantly, but reduces speed because it is necessary 
to pack and unpack bits. 

Parallel arrays versus arrays of objects or structures. Because of alignment 
restrictions, an object or structure may have unusable extra padding bytes. The 
number of padding bytes can be determined by using the sizeof operator, and 
subtracting the sizes of each individual field from the size of the object. If there are 
padding bytes, replacing an array of struct with a number of “parallel” arrays 
removes the need for this padding. 
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Packing. When dealing with large arrays of small integers, it can be more efficient 
to pack them together (i.e., more than one value per word), particularly when the 
information is binary (true or false), because only one bit per value is needed. The 
easiest way in C++ is to use std::bitset. Note that bit-fields members are a 
form of packing provided by the compiler that can support more than one bit. They 
are also much easier to use than coding it yourself. 

Packing object arrays with #pragma pack. Microsoft compilers support the 
“#pragma pack” preprocessor directive, which can specify the 
packing/alignment characteristics of an object. This can allow arrays of these 
objects to be packed more closely into storage. 

Reordering fields in objects and structures. Because of the word alignment on 
some machines, the order of fields in an object or structure can change the size of 
the object. This only applies to objects containing different size fields. A general 
rule for minimizing the space is to order the fields from largest to smallest. This 
heuristic may not give the best ordering — examine the size of a few different 
orderings using the sizeof operator, if space is crucial. This is a machine-
dependent optimization, and may not work well on some machines. 

Store integer codes instead of string names. If you’re storing a string to 
represent some particular type or a limited set of names, or something with a finite 
set, then you can use an enum instead. If you need to generate the actual string 
name, use an array lookup or a switch statement to return the equivalent string 
constant. For example, when dealing with AI word tokens, which are indeed fixed 
and finite, use the integer token code without storing the word as a string, while 
maintaining a single copy of the vocabulary strings (which you need anyway for the 
tokenizing algorithm). 

Measuring Code Size and Static Storage 

In general, it is more difficult to measure how much space a program is using than 
to measure how much time it is using. However, most environments provide some 
means of determining the size of instructions and static data in an executable 
program. If nothing else, the size of the executable file in overall bytes can be a 
reasonable guide. 

The size command. Under Linux and UNIX, a useful command is the “size” 
command, which examines an executable program and reports the memory used 
by its instructions and its global or local static variables. However, it does not 
(and cannot) report the stack or heap usage because the amount of such memory 
used is dynamic, and hence cannot be found by analyzing the executable.  
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The command is simply: 

    size a.out 

This produces output similar to the following: 

    text data bss dec hex 

    20480 8192 0 28672 7000 

The “text” value refers to the machine code instructions for the program code. 
Both the “data” and “bss” areas refer to global and local static variables. The 
“data” area refers to variables which have been explicitly initialized with values (e.g., 
string literals or initialized global variables); the “bss” area refers to variables with 
implicit initialization which defaults to zero (e.g., global variables or arrays without 
non-zero initializers). 

Function Code Sizes: If the code size is needed on a per-function basis, Linux 
and most other UNIX environments support the “nm” command. Windows also 
supports the nm command. 

    nm a.out 

The nm command differs slightly across older UNIX variants, but will usually print 
out information including the start and end address of a function, from which the 
size of a function can be trivially computed. 

Link Maps: Window users may be able to use a “link map” report. This allows to 
find out about executable size by examining the output produced by some C++ 
compilers at the link stage (although not all compilers will produce useful output). 
For example, the DOS “link” command with the “/map” option can be used 
when linking the object files: 

    link /map *.obj 

Code Bloat 

The size of the executable depends on the size of your C++ source code. Hence, 
the obvious way to reduce executable size is to go to the beach. Take a day off! Stop 
writing code, for goodness’ sake! 
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Remove unnecessary code. Methods to reduce the number of executable 
statements in your program could involve deleting non-crucial functions from the 
program, and eliminating any dead code or old redundant code that has been “left 
in” for various reasons. The use of compile-time initialization of global 
and static variables instead of assignment statements is another method for 
reducing code size. Turning off debug code such as assertions, debug tracing, and 
self-testing code can also work, but this loses the supportability benefit of shipping 
a fully testable version. 

Compile-for-space options. Another possibility is that your compiler may 
support an option that causes the optimizer to focus on space reduction. This 
causes it to generate executable instructions that are as compact as possible, rather 
than being as fast as possible. 

Avoid using large libraries. Pay attention to what code libraries you are linking 
with. Some of them are quite extensive, and may be much more than you need. Try 
to use the basic standard libraries as much as possible. 

Template overuse. Templates are a common cause of “code bloat” and their 
usage should be reviewed. This is particularly true if you are using an integer-
parameterized template in order to gain compile-time efficiency, or an approach 
such as Template Meta-Programming (TMP). If these templates are used with a 
large number of constant values, many copies of the template’s executable code will 
be generated. 

Avoid large inline functions. Overuse of inline functions has the potential 
to create more executable code. Try to limit your use of inline to small functions 
where the overhead of the function call is significant compared to the relatively low 
runtime cost of the function body. Don’t inline large C++ functions that can do 
lots of processing each call. 

Inline tiny functions. Although inlining large functions can cause code bloat, the 
reverse is usually true for very small functions. All of those getter and setter member 
functions have about one instruction. The code generated from an inlined call to 
these tiny functions may be much smaller than the instructions to call a real 
function. 

constexpr is inline, too. Remember that constexpr functions are also 
effectively a type of inline function. Again, try to limit these to relatively small 
functions. If a constexpr function is called with non-constant values, or is 
beyond the compiler’s ability to properly inline, then multiple copies of the 
executable code may result. 
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Library linkage. The size of the executable depends not only on the C++ code, 
but also on the extra library functions that are linked by the linker. Although it may 
seem that the programmer has no control over this, there are some techniques for 
reducing the amount of linked code. The techniques depend largely on how “smart” 
your linker is — that is, whether the linker links only the functions you need. 

Use DLLs for common libraries. Dynamic link libraries (DLLs) are one way to 
reduce the size of the executable, because the library executable code is loaded at 
runtime. If the DLL is a commonly used library, such as the standard C++ runtime 
libraries, not only will your executable smaller, but it’s also efficient at runtime 
because it will be loaded only once into memory, even if many programs are using 
the code. However, making your own special code into a DLL isn’t likely to offer 
much memory benefit at runtime, since it will simply be loaded dynamically rather 
than immediately at load-time. However, if it’s a library that isn’t needed in many 
invocations of your program, you can save memory by deferring loading of the 
library until you can determine whether it will be required. 

Remove executable debug information. Executable size can be reduced by 
avoiding generation of the “debug” information and symbol table information. For 
example, with GCC don’t use the “-g” debugging information or “-p” profiling 
instrumentation options. Linux programmers can also use the “strip” utility 
which strips symbol table information from the executable after it has been created. 
However, the extra symbol table information is more relevant to the amount of 
disk space the executable file uses than to the amount of memory it uses during 
runtime execution. 

Reducing Static Storage 

Static storage refers to the memory for global and local static variables, string 
constants and floating-point constants. All of the general size-reduction above can 
reduce the size of the global and static variables. 

String literal static memory. The space requirements for string constants can be 
reduced if the compiler has an option to merge identical string constants (which 
arise quite frequently). If there is no such option, or the option does not merge 
string constants across object files (which is quite likely), merging string constants 
can be achieved by the programmer, although the method is far from elegant. For 
example, including this variable in a header file and using it in multiple files may 
create multiple copies of the string literal: 

    #define TITLE "A very long string ... " 
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Instead, a global variable can be declared to hold the string constant and the name 
of this char array is used instead of the string constant. In modern C++ you can 
use “inline variables” to avoid linker problems with multiple definitions. 

inline const char TITLE[] = "A very long string ... "; 

This change is unlikely to reduce the speed of the program, nor does it increase 
memory requirements even if TITLE is used only once (there may seem to be an 
extra 4 bytes to hold a pointer value pointing at where the string of characters is 
stored, but this is not so). 

Large global variables. If there is a large global or static variable or array, the 
amount of static storage can be reduced by allocating it on the heap 
using malloc or the new operator, or by making it an automatic variable. This is 
particularly useful if the object has a short “lifetime”, in the sense that it is used only 
briefly (e.g., the array is used as temporary storage inside a function). If the variable 
is used all the time, this change doesn’t reduce the overall space problem, but simply 
moves the problem to another area. 

Stack Usage 

Stack storage refers to memory storage used for function calls, and includes (non-
static) local variables, function parameters and system information used to keep 
track of function calls. Hence, the basic methods of reducing stack storage are: 

• Use fewer and smaller automatic local variables. 

• Use fewer and smaller function parameters. 

• Use “const&” to pass objects by reference. 

• Use global or static local variables instead. 

• Reduce the depth of function call nesting. 

• Avoid recursion (always). 

Data sizes. The size of parameters and local variables can be reduced using the 
general methods of using smaller data types. Another method is to avoid passing 
large objects and to only large objects by reference (which is faster anyway). Don’t 
use large arrays or buffers as local variables, but prefer allocated buffers or global 
buffers, or declare them as local static variables. 

Fewer parameters. The number of parameters can be reduced by using global 
variables, or by packing a number of parameters into an object and passing the 
whole object (which is often faster, too). 
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Fewer local variables. The number of local variables can be reduced by re-using 
local variables, although this can introduce bugs if not enough care is taken. 
Common examples of reusable variables are scratch variables, such as temporaries 
or for loop index variables. Another method of reducing the number of local 
variables is to use parameters as if they were local variables (this is safe because of 
call-by-value). Overall, most of these suggestions are minor improvements, unless 
you’re using very large arrays or objects as local variables. 

Flatten call hierarchies. Reducing the depth of function call nesting (especially by 
avoiding recursion) also reduces stack space requirements. This can be achieved by 
using preprocessor macros or inline functions (but this may increase code size). 
You can also refactor your code to avoid too many layers of wrapping functions in 
interfaces. Naturally, recursion should be avoided as much as possible by using 
iterative loop algorithms or tail recursion elimination. 

Reducing Heap Usage 

Your C++ IDE should support tools that track heap or stack usage dynamically. 
For example, MSVS has a “heap profiler” tool that you can enable. Linux tools such 
as Valgrind can be very usual to examine heap memory usage. 

The amount of heap storage used depends on the size of blocks, the number of 
blocks and how quickly allocated blocks are deallocated. The size of blocks can be 
reduced using the general techniques of reducing data sizes (e.g., small data types, 
packing, unions). 

Fewer allocation calls. The number of heap blocks affects heap usage in the 
obvious way (more blocks means more memory) and because of the fixed space 
overhead of a few hidden bytes to store information about the block (so 
that delete or free can de-allocate it). When small blocks are used, it can be 
useful to pack more than one block together to avoid this fixed overhead. 

Avoid small frequent allocations. If your frequently-used class allocates a small 
amount of memory in a constructor and then deallocates it in the destructor, 
consider ways to avoid this pattern. Small amounts of data could possibly be stored 
in extra fields of the object. 

Memory leaks waste memory. Obviously, avoiding memory leaks which are 
never returned to the heap is important to reducing heap memory usage. There are 
many tools and debug libraries available to detect leaks, and ongoing use of these 
tools will reduce overall heap fragmentation. 
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Early deallocation of memory. It’s a win if you have avoided leaking the memory, 
but that’s not the end of the story. All allocated memory should be returned to the 
heap as early as possible. If memory is not deallocated, unused memory (called 
“garbage”) can accumulate and reduce the available memory. 

Avoid realloc. Measure and manage any calls to realloc, as they can be a 
significant cause of heap memory fragmentation. And they’re also not time-
efficient, so reducing them is a win-win. 

Manage std::vector sizes via the “reserve” member. The resize 
operations in std::vector can lead to extra unnecessary allocation requests. 
Judicious use of the “reserve” function can avoid this. 

Linearize multi-dimensional allocated arrays. One big allocation of a linear 
array is much more efficient on the heap than allocating separate blocks for rows 
or lower-dimensions of the array. An array of pointers into the linearized large block 
is only one more allocation, and has the same efficiency as having each pointer be 
a separate dynamically allocated subarray. 

Smart buffers. Use objects that contain a limited amount of memory, which is used 
for the typical cases. If a longer string, or larger array is required, it needs to allocate 
memory and manage that process. Overall, this can massively reduce the number 
of allocated blocks. 

Memory fragmentation. Reduce memory fragmentation by reducing both 
allocations and deallocations. It’s also important to manage the many different sizes 
of allocations, as varying block lengths cause more fragmentation. 

Per-class allocators. In severe situations, take control of your class’s dynamic 
objects by defining your own per-class allocators. Since the allocators knows that 
all block requests will be the same size, it can not only be faster, but also better at 
reusing memory blocks and avoiding memory fragmentation. But this method can 
also be a big failure if coded lazily to first allocate one huge chunk of memory.  

These allocators should dynamically manage their requests for more storage, using 
some reasonable incremental block size, rather than attempting to guess their 
maximum requirements up front. 
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19. Loop Vectorization 

Sequential vs Parallel Loop Optimizations 

Loops are often sources of inefficiency and can be optimized in numerous ways. 
And the basic algorithms for neural networks are full of loops, with nesting to 
multiple levels in tensor operations. Increasing throughput of the GPU data is one 
of the main goals achieved by loop optimizations. 

Not all loop transformations are created equal. Some of them are best for sequential 
code optimizations, whereas other loop transformations are used to parallelize 
loops for vectorization. 

Loop transformations that are good for both sequential and parallel loop 
optimization include: 

• Loop unrolling — repeat the loop body to reduce loop test overhead and 
parallelize the loop body. 

• Loop peeling — unroll the first few iterations. 

• Loop coalescing — flatten nested loops. 

• Loop splitting — split out subportions of the iteration range. 

• Loop collapsing — another way to flatten nested loops. 

• Loop interchange — switch the inner and outer loop iterators of nested 
loops. 

• Loop reordering — change the ranges and arrangements of inner/outer 
nested loops. 

Some loop transformations are mainly for sequential improvements, and are not 
parallelization in themselves. However, these techniques can sometimes help with 
parallelization if they enable another followup loop parallelization optimization.  
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Loop transformation optimizations which tend to be good for sequential code 
optimizations but not parallelization include: 

• Loop fusion — combine or “fuse” the bodies of two loops. 

• Duff’s device — amusing but impractical coding trick for loop unrolling. 

• Loop code motion — move or “hoist” loop-invariant calculations from 
the loop body to pre-loop initialization. 

• Loop perforation — randomly skip a subset of loop iterations; it’s really a 
thing. 

• Loop sentinel — fake it till you make it. 

• Loop iterator strength reduction — change “*” to “+” if you can. 

• Loop reversal — going backwards, and yet, still making progress! 

Parallelizing loop optimizations with a main goal of vectorization of the loop body 
include: 

• Loop fission — opposite of loop fusion; split a single loop body into two 
loops. 

• Loop tiling — process sub-parts of contiguous data in separate loops. 

• Loop distribution — split two sub-parts of a loop body into two simpler 
separate loops. 

Loop Fusion 

Loop fusion is a well-known code optimization where two separate loops are 
merged into a single loop. This does not change the amount of in-loop computation 
in either loop body, but reduces the loop overhead of the exit test by half. There is 
also often a benefit from data locality that reduces data movement and temporary 
data storage, which can also improve overall speed. 

Note that loop fusion is not great at vectorization, because complicated loop bodies 
are actually harder to parallelize. Most of the benefits arise in traditional sequential 
code execution, which is why its theory dates back many decades. For modern 
parallel execution on GPUs, loop fusion is often a poor choice, and more benefits 
may arise from loop fission (the opposite of fusion) and loop vectorization. 

Example: Loop Fusion: The general idea is to combine the body of two loops 
into a single loop. Here is a simplistic example with the (non-fused) loops for 
initializing two vectors using two sequential loops: 

   for (i = 0; i < n; i++) v1[i] = 0; 

   for (i = 0; i < n; i++) v2[i] = 0; 
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And here is the version with loop fusion: 

   for (i = 0; i < n; i++) { 

       v1[i] = 0; 

       v2[i] = 0; 

   } 

Note that the loop fusion version incurs the same number of assignments for 
initialization, but only half of the loop overhead cost (i.e., half of the “i < n” and 
“i++” operators have been optimized away). And for the sake of argument, let’s 
pretend we don’t know a better way to initialize a vector in C++ 
like memset or calloc or load-time static variable initialization. 

Loop Perforation 

The intentional introduction of randomness to your C++ code is known as a 
“stochastic” algorithm. Personally, I’m more familiar with the unintentional 
introduction of randomness, otherwise known as a “bug,” but now when it happens 
you can tell your boss that you were adding “stochastic functionality.” 

Code perforation is an optimization technique that trades accuracy for speed, by 
randomly (ahem, I mean, stochastically) skipping some computations. Essentially, 
using loop perforation is similar to an approximation with a random element, but 
in a generalized way for any iterative code.  

Loop perforation skips iterations of a loop in a probabilistic manner. Randomly 
skipping some percentage of the loop bodies doesn’t sound like a good plan.  

Example: Loop Perforation: Here is an example of adding loop perforation to a 
vector dot product computation. This is an incredibly slow version, and is not 
recommended, but is just to give the idea of skipping a percentage of the iterations: 

    float aussie_vecdot_perf(float v1[],float v2[],int n,int pc)    

    { 

        // Loop perforation -- vector dot product 

        float sum = 0.0; 

        for (int i = 0; i < n; i++) { 

            if ( ( rand() % 100 ) + 1 <= pc) { 

                continue; // Skip it... perforated 

            } 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 
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Loop Unrolling 

Loop unrolling is a code optimization where the body of a loop is repeated in 
sequential code. This speeds up the algorithm because the overhead of both the 
incrementer and the loop iteration test is avoided. In some cases, the entire loop 
can be unrolled, usually when the loop iterations are finite and known at compile-
time. In other cases of partially unrolling, the loop body can be repeated multiple 
times, and thereby the loop test only occurs every few iterations. 

For an AI engine, loop unrolling is used as an optimization in a few places. It is one 
of the optimizations used by kernel fusion, along with loop fusion and others. Since 
many meta-parameters of AI models are finite and fixed numbers (e.g., the “model 
dimension”), there are many cases where an entire loop can be unrolled and then 
vectorized into the GPU. 

The logical extension of loop rolling is done by machine learning compilers, at least 
from a conceptual point of view. These ML compilers unroll the inference loop and 
the lower-level loops in matrix operations, thereby creating a finite graph 
representation of the entire inference sequence. If all is unrolled, there are no loops 
in the graph (an “acyclic” graph) and it is of finite size. The process of model 
inference is propagation of data through the graph. There are many “graph 
optimizations” that can be made on this graph representation of the AI model. 

Example: C++ Loop Unrolling of Vector Dot Product. Here is the basic C++ 
non-unrolled vector dot product code: 

   float aussie_vecdot_basic(float v1[], float v2[], int n) 

   { 

        // Basic vector dot product 

        float sum = 0.0; 

        for (int i = 0; i < n; i++) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

   } 

If we know the value of n, e.g., that n=5, then we can completely unroll it: 

   return v1[0] * v2[0] 

        + v1[1] * v2[1] 

        + v1[2] * v2[2] 

        + v1[3] * v2[3] 

        + v1[4] * v2[4] 

        ; 
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If we don’t know the value of n, we can still unroll multiple iterations. Here’s an 
example of 4-level loop unrolling by assuming that n is a multiple of 4: 

   float aussie_vecdot_unroll4(float v1[], float v2[], int n) 

   { 

        // Loop-unrolled Vector dot product  

        if (n % 4 != 0) { 

            aussie_assert(n % 4 == 0); 

            return 0.0; // fail 

        } 

        float sum = 0.0; 

        for (int i = 0; i < n; ) { 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

        } 

        return sum; 

   } 

And here’s a generalization of that 4-level unrolling with extra code to handle the 
leftover cases if n is not a multiple of 4. Although the extra cases look messy, they 
are not actually the main performance bottleneck. 

    float aussie_vecdot_unroll4b(float v1[], float v2[], int n) 

    {    

        // Better loop-unrolled Vector dot product  

        int i = 0; 

        float sum = 0.0; 

        if (n % 4 != 0) { 

            switch (n % 4) {  // Handle extra cases... 

            case 1: sum += v1[i] * v2[i]; i++;  

                break; 

            case 2: sum += v1[i] * v2[i]; i++; 

                sum += v1[i] * v2[i]; i++; 

                break; 

            case 3: sum += v1[i] * v2[i]; i++; 

                sum += v1[i] * v2[i]; i++; 

                sum += v1[i] * v2[i]; i++; 

                break; 

            default: aussie_assert_not_reached(); break; 

            } // end switch 

        } 

        for (; i < n; ) {  // Unrolled 4 times... 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

        } 

        return sum; 

    } 
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This code is just an example for explanation. There are various further code 
optimizations that can be done for production-level efficiency. For parallelization, 
the loop body should call an intrinsic function to vectorize the method. For an AI 
engine, we could choose our model dimension and other meta-parameters as 
multiples of the loop unrolling factor, and thereby avoid ever having any of the 
“leftover” cases. 

For sequential code, we could change it to use pointer arithmetic rather than array 
indices, we might try replacing the four i++ operators with i+=4, change the 
integer modulo operator (%) to a bitwise-and operator test (i.e., use “n&3” not 
“n%4”, which works since 4 is a power-of-two), and it also might be better to use 
“+” rather than the “+=” operator. Finally, if we carefully code the leftover cases, 
the main loop could be unrolled to many more levels than just four. 

Duff’s Device for Loop Unrolling 

There’s a neat coding trick called “Duff’s Device” for loop unrolling, which uses 
a switch with case fallthrough to mimic assembler coding style. However, it’s 
not great for vectorization as it’s likely to confuse the compiler, so may be mostly 
of theoretical interest. 

    float aussie_unroll4_duff(float v1[], float v2[], int n)   

    { 

        // Unrolled dot product with Duff’s Device  

        int i = 0; 

        float sum = 0.0; 

        switch (n % 4) { 

            for (; i < n; ) { 

                case 0: sum += v1[i] * v2[i]; i++; 

                case 3: sum += v1[i] * v2[i]; i++; 

                case 2: sum += v1[i] * v2[i]; i++; 

                case 1: sum += v1[i] * v2[i]; i++; 

                default:; 

            } // end for 

        } // end switch 

        return sum; 

    } 

What’s happening here? My brain hurts looking at this code! The trick is that the 
outside switch branches into a case that is inside the body of a for loop. This 
is not normal everyday coding, because there’s a loop inside a switch, and the 
loop body crosses over several different case statements. Also, none of 
the case statements has a “break” statement and they instead rely on fallthrough 
semantics.  
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Similarly, the “default” clause is mainly just to avoid getting a spurious 
compilation warning (i.e., “missing default”), and also has no “break” with only 
a lonely semicolon. Note also that the case labels are written in reverse order from 
top to bottom (3..2..1), except for 0 at the top. 

How does this even work? The first point is that it does. This code performs the 
exactly correct number of iterations for any value of n (except n==0), and similar 
versions with an unrolling factor of more than 4 will also work (i.e., if you change 
“n%4” and add more case constants).  

The code looks like a hack, but actually uses standardized C++ semantics 
of case fallthrough and switch multi-way control flow and should work on all 
platforms. Branching into the middle of a loop with a switch is valid in C++ 
provided it doesn’t bypass any local variable initialization (hence, don’t put “sum” 
into the switch). Also, the case fallthrough semantics (i.e., without a “break” 
ending each “case”) are standard for C and C++ since inception.  

Finally, note that this code is buggy for the case n==0, because it incorrectly does 
4 iterations, so it ideally needs a parameter validation assertion at the start. 

Bug alert! Note that you cannot tweak the “i++” instruction using the standard 
idiom: 

   sum += v1[i] * v2[i++];  // Bug! 

The obscure problem is that the “*” operator doesn’t guarantee left-to-right 
evaluation of its operands. The code assumes evaluation order 
of: v1[i], v2[i], *, i++, starting from the left. However, the C++ optimizer can 
legally do this order of operations: v2[i], i++, v1[i], *, which is not what you 
intended and gets the wrong array element for v1[i]. This code might be 
unreliable across platforms, or it might work in the debugger mode, but fall over 
once you turn on high levels of optimization. So, there is an “order of evaluation” 
pitfall if you put “++” in an operand of the “*” operator or many other binary 
arithmetic operators. 

Is Duff’s Device any faster? The short answer is “not really,” although it looks 
very appealing (or appalling). Firstly, note that this trick is not actually very useful 
for vectorization, because a switch cannot branch into the middle of a vectorized 
intrinsic (i.e., if you replace the loop body with a SIMD instruction). Furthermore, 
although I haven’t tested it, I doubt many optimizers will be able to auto-optimize 
that complex control flow with SIMD instructions. In sequential code, this method 
also isn’t much faster, as it doesn’t really have fewer operations than a basic unrolled 
loop (i.e., with extra cases handled separately before or after the main loop).  
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The above example of Duff’s Device can be further sped up using pointer 
arithmetic and “looping down to zero” optimizations, but so can the other unrolled 
versions. However, there is a minor speed advantage in terms of “instruction 
locality” because the above code is very concise. 

The main advantage of Duff’s Device is to bamboozle your colleagues. You can 
use Duff’s Device with any unrolling factor, not just 4 as in the example shown 
above (e.g., change to 8 by using “n%8” and adding cases for 4, 5, 6, and 7, ordered 
from 7 down to 1, leaving 0 on top). Actually, the unrolling factor needn’t be a 
power-of-two. Make it a prime number for extra bonus points. If you want more 
of this kind of coding trickery, also search up Jensen’s device and Pigeon’s device. 

Loop Tiling or Blocking 

When you hear about a “tiled MatMul” or a “blocked GEMM,” this is the “tiling” 
or “blocking” optimization method it refers to. MatMul is matrix multiplication and 
GEMM is General Matrix Multiplication (i.e., the same thing). Tiling is the 
optimization that most applies to speeding up matrix or tensor multiplication in AI 
engines. 

This optimization is for two-dimensional data (e.g., matrices). When you hear 
“tiles” or “blocks,” think squares or rectangles of data. For example, if you have a 
512x512 matrix, then a tiled algorithm might act on 16x16 sized chunks, one at a 
time. Loop tiling is an optimization of two-dimensional or three-dimensional data 
such as matrices or tensors. The one-dimensional equivalent of processing sub-
parts of a one-dimensional array is called “strip mining”, “loop sectioning” or often 
simply “vectorization.” 

In other words, tiling means operating on small subsections of a matrix. If you hear 
“tiled tensor” that could mean two-dimensional data (i.e., just a fancy name for a 
matrix), or alternatively it might refer to three-dimensional data, in which case, don’t 
think anything or else your head will hurt. 

Loop tiling is a method of executing sub-parts of nested loops in a way that 
maximizes data locality, increases cache utilization, and improves parallel execution. 
This is also called “loop blocking” because it processes the data a “block” at a time, 
although the term “tiling” is more widely used in research. The two-dimensional 
sub-partitions of the data that are square or rectangular are called “tiles” or 
“blocks”. 

The same number of arithmetic operations are performed in a tiled versus non-tiled 
algorithm. However, there should be fewer loads of the data into memory with 
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tiling. The downside is that tiling introduces additional loop overhead. In fact, 
rather than flattening nested loops over a 2-D array (e.g., 512x512), tiling often 
introduces additional levels of nesting! The two small loops that spin through the 
16x16 square shape of a single “tile” or “block” are often newly added inner loops. 
So, loop tiling often adds two new layers of nested loops inside your already-nested 
loops. It makes you wonder how it can even be faster! 

Example: Tiled Matrix Clear: For these examples, there is a “ymatrix” type: 

    typedef float ymatrix[ROWS][COLUMNS]; 

If we forget about memset, here is the simple code to clear a matrix one element 
at a time in a brute-force nested loop (non-tiled): 

    void aussie_clear_matrix(ymatrix m) 

    { 

        for (int i = 0; i < ROWS; i++) { 

            for (int j = 0; j < COLUMNS; j++) { 

                m[i][j] = 0.0; 

            } 

        } 

    } 

Now we decide to add a 4x4 square tile optimization to this code. The result is an 
extra two levels of nested loops. Here is the basic code which assumes that the row 
and column dimensions are exact multiples of the tile size, so there’s no extra 
leftover cases to handle: 

    void aussie_clear_matrix_tiled(ymatrix m) 

    { 

        const int TILEX = 4; // 4x4 tile size 

        const int TILEY = 4; 

        static_assert(ROWS % TILEX == 0, "Exact X"); 

        static_assert(COLUMNS % TILEY == 0, "Exact Y"); 

        for (int i = 0; i < ROWS; i += TILEX) { 

          for (int j = 0; j < COLUMNS; j += TILEY) { 

              // Do the 4x4 tile... 

              for (int tx=i; tx < i+TILEX; tx++) { 

                  for (int ty=j; ty < j+TILEY; ty++) { 

                      m[tx][tiley] = 0.0f; 

                  } 

              } 

          } 

        } 

    } 
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Unrolled Tiles. One followup optimization trick with a tiled loop algorithm is to 
apply loop unrolling to the two inner loops. This avoids the extra overhead of the 
two extra inner loops, but retains the data locality benefits of tiling. This 
optimization results in a fully “unrolled tile” computation without any extra inner 
loops. In the above example, the two inner loops of a 4x4 tile would be replaced 
with 16 unrolled computations in sequence. Or for a vectorized version, a fully 
unrolled tile would be 4 sequential calls to vectorized intrinsics that each do 4 
operations in parallel (e.g., AVX intrinsics each do 4 float operations in parallel). 

Example: Tiled Matrix Multiplication: Tiling techniques are widely used inside 
neural network code to improve the efficiency of MatMul's and thereby get better 
throughput of tensor calculations from a GPU. Matrix multiplication is a good 
candidate for this optimization because it has O(n^3) arithmetic calculations, but 
uses only O(n^2) data. Hence, a naive matrix multiplication algorithm that doesn’t 
address locality will re-load the same data into memory many times, whereas a tiled 
algorithm can reuse the same data more efficiently. 

A tiled version of MatMul processes “tiles” or “blocks” of each matrix one at a time 
(i.e., small square or rectangular sections), with the aim of keeping small parts of 
the matrix in the memory cache while they are processed. The algorithm progresses 
across the matrix a tile/block at a time, rather than scanning all the way down one 
dimension (row or column). The same number of multiplication operations are 
performed as a non-tiled MatMul, but data locality and cache freshness should 
improve the overall speed. 

Loop Fission 

Loop fission is an optimization that is the opposite of loop fusion. Instead of fusing 
two loops into one, we take one loop and split parts of it into two loops. Loop 
fission also been called other names such as “loop splitting” or “loop distribution.” 

Loop fission can be more efficient for parallel execution (e.g., vectorization for 
GPUs), but is often slower for sequential execution. Whereas loop fusion aims to 
remove the overhead of one of the loops, loop fission tolerates an increased loop 
overhead in return for simpler loop bodies that can be parallelized. The kernel 
optimization of “kernel fission” is based on loop fission, and loop fission is one 
technique used to achieve vectorization for GPUs. 

The main reason to use loop fission is hardware acceleration via loop parallelization. 
A complicated single loop can often run faster if split into two simpler loops, if 
hardware acceleration can be accessed.  
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This is true even if the two resulting loops must run sequentially, because the 
iterations of each loop are parallelized, but there’s a double benefit if the two whole 
loops can also run in parallel. 

Example: Loop Fission in BatchNorm: A good example arises in part of the 
code for batch normalization. Each element of the vector needs to have two 
operations performed on it: subtract the mean (re-centering) and multiply by a 
variance factor (re-scaling). The naive implementation of the second half for 
BatchNorm looks like this: 

    float denom = sqrtf(varc + eps); // Scale factor 

    for (int i = 0; i < n; i++) { 

        // Normalize: re-center and scale 

        v[i] = (v[i] - fmean) / denom;  

    } 

This is difficult to hardware accelerate because it’s unlikely that there’s a combined 
“subtract-and-then-divide” operation to apply to all elements of a vector in parallel. 
The first point is that maybe there’s an “add-and-then-multiply,” in which case we 
can use the negative of the additive factor and the reciprocal of the scaling factor. 
However, assuming there’s not, loop fission can be used to split the single 
complicated loop into two sequential loops. 

Here's the code: 

    float negmean = -fmean;  // Use negative addition 

    float denom = sqrtf(varc + eps); // std. deviation 

    float recip = 1.0f / denom;  // reciprocal multiply 

    // Loop 1: Re-center using mean 

    aussie_vector_add_scalar(v, n, negmean); 

    // Loop 2: Re-scale by factor 

    aussie_vector_multiply_scalar(v, n, recip); 

Each of the two loops is now easy to hardware accelerate, because they are both 
very simple vector operations: “multiply-by-scalar” and “add-scalar.” Every 
platform is likely to have hardware acceleration APIs for those simpler operations.  

So, to summarize, we got an explosive boost to hypersonic rocket speed using 
atomic operations with loop fission. Isn’t that just the bomb? 
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Loop Reversal 

Loop reversal is the optimization of making the loops go backwards. It does the 
same number of arithmetic operations, but in reverse order, so there is no change 
in the total arithmetic operations. 

This goal is a speedup by “looping down to zero” with a faster loop test, but it is 
often a de-optimization even for sequential execution. Typical CPU processors rely 
on ascending order of memory accesses for predictive cache pipelining, and reverse 
array access is a worst case for that. 

Loop reversal is also not a useful parallelization method in itself. Vectorization for 
GPU computation doesn’t really work in reverse. However, reversing a loop can 
sometimes be useful as an initial transformation on nested loops if reversing the 
inner loop’s direction allows another followup loop vectorization technique. 

Example: Reversed Vector Dot Product: Loop reversal can be used on vector 
dot product, as below, but it probably shouldn’t be. Here’s the basic idea: 

    float aussie_vecdot_rev(float v1[], float v2[], int n) 

    { 

        float sum = 0.0; 

        for (int i = n - 1; i >= 0; i--) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

Note that there are several coding pitfalls to avoid. The loop variable “i” cannot 
be “unsigned” or “size_t” type, because the test “i>=0” would never fail, 
creating an infinite loop. Also, the reversed loop needs to start at “n-1” and must 
use “i>=0” (not “i>0”) to avoid an off-by-one error. The above code also craters 
for “n<=0” and needs a safety test. 

Loop Code Motion 

Loop code motion is moving loop-invariant code from inside the loop body to the 
pre-initialization code for the loop. Any code that has the same value should not be 
performed inside the loop body. Instead, it should be pre-calculated before the 
loop, and stored in a temporary variable. This is sometimes called “hoisting” the 
code out of the loop. 
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Example: Loop Code Motion: One common example of having unnecessary 
recalculation of loop-invariant values is in the loop test. The code in the Boolean 
test for the loop is actually part of the loop body. 

An example of code that re-calculates the loop limit: 

   for (i = 0; i < vec.num_elements(); i++) { 

      // ... 

   } 

The “num_elements” call is probably loop-invariant, assuming the vector doesn’t 
change size during processing. Maybe the “num_elements” function is declared 
“inline” and the C++ compiler will fix it anyway. Nevertheless, this is a candidate 
for loop code motion, using a temporary variable instead: 

   int n = vec.num_elements();  // Loop-invariant value 

   for (i = 0; i < n; i++) { 

      // ... 

   } 

Loop Distribution 

Loop distribution is type of loop code motion that creates two loops from a single 
loop that contain an “if” statement. The hoisted code is a conditional test. Some 
early papers in the 1990s called it “loop unswitching.” Some papers use the term 
“loop distribution” with the different meaning of splitting a loop into two loops, 
which we call “loop fission.” 

The goal of loop distribution is to move an “if” test out of the loop body, by 
creating two loops, and ends up creating two separate loops on two pathways. This 
sounds similar to loop fission, but loop distribution is a more general optimization 
that doesn’t require parallelization to get a speed improvement (whereas loop 
fission does). Instead, loop distribution gets a benefit in ordinary sequential 
execution because it moves the if-test computation out of the loop body to a once-
only pre-initialization test (i.e., “hoisted”).  

Note that only one of the two loops is executed each time, and these two loops are 
never executed in parallel, so this technique is not really a type of loop fission. 
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Example: Loop Distribution: Here’s a dummy example of implementing an 
“add-or-subtract” function using a passed-in Boolean flag. 

    void aussie_vector_addition_slow( 

        float v[], int n,  

        bool do_add, float scalar) 

    { 

        for (int i = 0; i < n; i++) { 

            if (do_add)  

                v[i] += scalar; // Add 

            else 

                v[i] -= scalar; // Subtract 

        } 

    } 

The problem is that the test “if(do_add)” is computed for every loop iteration, 
and yet “do_add” is a loop-invariant flag variable. The faster version is to use loop 
distribution to move the if-test into the loop initialization, and then split the two 
pathways inside the loop to instead have two separate loops. Here’s the faster 
version: 

    void aussie_vector_addition_loop_distribution( 

        float v[], int n,  

        bool do_add, float scalar) 

    { 

        if (do_add) { // Add scalar 

            for (int i = 0; i < n; i++) { 

                v[i] += scalar;  // Add 

            } 

        } 

        else {  // Subtract scalar 

            for (int i = 0; i < n; i++) { 

                v[i] -= scalar; // Subtract 

            } 

        } 

    } 

This example is still far from optimal. For starters, it should be using pointer 
arithmetic rather than array indices. 
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Loop Reordering 

In neural networks, there are many loops, and many ways of nesting them, or 
running them in sequence. The convolution layers in CNNs can have literally seven 
layers of nested loops. Hence, there are various research papers exploring different 
orders to perform the various computations. 

Loop reordering is the general class of optimizations that involves reordering loops 
or their iterations. This can refer to changing the ordering of two sequential loops 
or two nested loops. The reordering optimization to reverse the inner and outer 
nested loops is more precisely called “loop interchange.” A single loop can also be 
reordered with “loop reversal.” 

Loop reordering is a tricky optimization that doesn’t fully reduce the total number 
of computations, because it always executes the same number of iterations as the 
original version. However, loop reordering may have several benefits: 

• Vectorization. Putting the loop in a different order may make it more 
vectorizable, or may allow other loop transformations to be applied before 
vectorization. 

• Data locality. Reordering the loops may improve data locality and cache 
access speed by doing the operations in a different order. This reduces the 
cost of accessing the data into memory (or low-level caches), rather than 
the cost of the arithmetic. It is therefore related to memory/dataflow 
optimizations and pipelining optimizations. 

• Reduced loop overhead. Both loop interchange and loop reversal can 
reduce the general overhead of loop testing. Loop interchange allows the 
shorter loop to be on the outside. Loop reversal allows “looping down to 
zero” which reduces overhead. 

Loop Iterator Strength Reduction 

Loop strength reduction is the arithmetic optimization of “strength reduction” 
applied to loop iteration variables. For example, strength reduction aims to replace 
multiplication with addition. Consider this loop: 

    for (int i = 0; i < n; i++) { 

        a[i] = 10 * i; 

    } 
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This can be optimized to change the multiplication into an incremental addition: 

    for (int i = 0, x = 0; i < n; i++) { 

        a[i] = x; 

        x += 10; 

    } 

Note that the loop strength reduction optimization isn’t a good choice for loop 
parallelization. Although it would be desirable to change a vectorized multiplication 
to addition, this optimization has changed to an incremental algorithm. This makes 
each loop iteration dependent on the prior one, with the results dependent on the 
previous computation, so they cannot be done in parallel. 

Loop Coalescing 

Loop coalescing is a loop optimization that involves flattening two nested loops 
into one non-nested loop. Typically, loop coalescing will still operate on a 2-
dimensional array, whereas flattening both the nested loops and the array is called 
“loop collapsing.” 

As a dummy example, consider a matrix initialization via nested loops: 

    for (int i = 0; i < n; i++) { 

        for (int j = 0; j < m; j++) { 

            arr[i][j] = 0.0f; 

        } 

    } 

Loop coalescing involves changing to a single loop, but still using two indices i and 
j, which are calculated from the main linear index. 

    int maxx = n * m; 

    for (int x = 0; i < maxx; x++) { 

        int i = x / n; 

        int j = x % m; 

        arr[i][j] = 0.0f; 

    } 

The benefit in speed from loop coalescing can arise by simplifying the loop, which 
makes it easier to parallelize via hardware acceleration, and also maybe a different 
data access pattern which might improve data locality and cache freshness. 
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This optimization is not always possible, as nested loop logic is often quite 
complicated, and flattening a nested loop may actually worsen data locality in many 
instances. However, the linear nature of a simple loop can make the code to send 
off chunks to a GPU much easier. 

Loop Collapsing 

Loop collapsing is closely related to loop coalescing, since both aim to flatten nested 
loops, but loop collapsing is a special situation where the array is also flattened to 
one dimension. 

Consider a matrix initialization via nested loops over a 2-dimensional array: 

    for (int i = 0; i < n; i++) { 

        for (int j = 0; j < m; j++) { 

            arr[i][j] = 0.0f; 

        } 

    } 

The loop collapsed version has one big loop over a different one-dimensional array: 

    int maxx = n * m; 

    for (int x = 0; x < maxx; x++) { 

        arr2[x] = 0.0f; 

    } 

This loop transformation to a single loop is obviously more amenable to 
vectorization. 

Loop Peeling 

Loop peeling is a type of loop unrolling that involves unraveling only the first few 
iterations of a long loop. This is also similar to “loop splitting” with two sections, 
where the first section is over the early range, and the second range is the main 
section of all remaining iterations. 

Loop peeling is beneficial to the overall loop efficiency if there is code in the loop 
body that is only required for one or two early iterations, which can then be 
removed from the main loop body. Similarly, there can be benefit in unraveling the 
last few iterations of a loop, which is a similar technique. 
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One common case of loop peeling is when the first iteration is different from the 
rest, so peeling off a single iteration is valuable. 

    for (int i = 0; i < n; i++) { 

        arr[i] = (i == 0) ? 0.0f : 1.0f; 

    } 

In this case, we can peel off the first “i==0” iteration into a single unrolled 
instruction, and change the main loop to start at 1. This is also a trivial form of 
“loop distribution,” where we are hoisting an “if” conditional test out of the loop. 
The new code becomes: 

    arr[0] = 0.0f;  // Peeled 

    for (int i = 1 /*not 0*/ ; i < n; i++) { 

        arr[i] = 1.0f; 

    } 

This peeled version is faster in terms of both sequential or parallel execution. The 
loop body has less computation and is also more amenable to vectorization. 

Loop Splitting 

Loop splitting refers to splitting the sequential iterations of a loop into two loops, 
which each perform part of the original loop’s iterations. Loop splitting is closely 
related to “loop sectioning” (“strip mining”), but often relates to more complex 
arithmetic in the loop body.  

Note that “loop peeling” is a special case of loop splitting where the first section is 
a small range of a few initial iterations, but these few iterations are unrolled rather 
than looped. 

Loop splitting takes a single loop and transforms it into at least two “split-out” 
loops, one for the early iterations, and one for the remainder. However, loops can 
also be split out into more than two loops. 

In loop splitting, each split-out loop is shorter than the original loop. Unlike loop 
fission, the two loops operate over different subportions of the iterator variable 
range, executing the same number of total iterations, rather than double iterations 
as in loop fission. 
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Example: Loop Splitting: Here’s some example code to “sqrtize” a vector, using 
a cached optimization for the numbers up to 100. 

    void aussie_vector_do_sqrt(float v[], int n) 

    { 

        for (int i = 0; i < n; i++) { 

            if (i < 100) { // Fast cases 

                v[i] = aussie_sqrt_optimized(v[i]); 

            } 

            else {  // General case 

                v[i] = sqrtf(v[i]); 

            } 

        } 

    } 

However, we can use loop splitting to split this big loop into two shorter disjoint 
ranges. Instead of 0..n-1, we do 0..99, and then 100..n-1. Each loop is over part of 
the range, and has a simpler loop body. Note that this code fails with an array 
bounds violation for small values of n less than 100. 

    void aussie_vector_do_sqrt_loop_splitting(  

           float v[],  

           int n) 

    { 

        for (int i = 0; i < 100; i++) { // Fast cases                 

            v[i] = aussie_sqrt_optimized(v[i]); 

        } 

        for (int i = 100; i < n; i++) { // General case 

            v[i] = sqrtf(v[i]); 

        } 

    } 

The loop splitting optimization is beneficial if the loop body has different sections 
of code that only relate to a subset of the iterator range. Hence, the loop bodies in 
the two loops can be reduced to execute less code. Overall, there is still the same 
number of iterations performed in the two loops combined, but each loop performs 
only a proportion of the original iterations on a simpler loop body. This optimizes 
sequential execution and the simpler code in each loop body may make 
vectorization of one or both subloops easier. Furthermore, both subloops could 
run in parallel. 
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Loop Interchange 

Loop interchange is an optimization of nested loops that switches the inner and 
outer loops. In a typical nested loop, the outer loop body and loop test is executed 
rarely, almost lazily, whereas the inner loop body is scrambling along in a frantic 
mess. Loop interchange simply switches them, reversing their roles. 

Why is this an optimization? Although the same number of loop iterations still 
occur in total, and the newly-made inner loop body is also thrashed, various 
improvements can arise from reversing the iterator variables, usually to make the 
innermost loop the longest. Possible optimizations result from: 

• Fewer outside computations. A shorter outside loop reduces the arithmetic 
operations of the outer loop, whereas the inner loop’s number of 
computations is unchanged in either loop structure. 

• Data locality. Another possible improvement is in data locality, which can 
reduce cache misses and speeds up the overall execution. Note that this 
benefit is not guaranteed just by switching loops, and sometimes loop 
interchange can worsen data locality; careful analysis is needed. 

• Inner loop vectorization. Another important possibility is that reversing 
nested loops can create opportunities to apply other loop optimizations to 
the new inner loop, notably to vectorize the inner loop. 

Shortest loop outside, longest innermost loop: One of the considerations of 
loop interchange is the optimization of putting the shortest loop on the outside, 
and making the innermost loop with the longest range of iterations. This is an 
optimization for both sequential or parallel execution. For sequential execution, 
there is less overhead from the outer loop, because it is shorter. For parallelization, 
there is improved vectorization of the inner loop, which now has a longer range. 

Consider this example: 

    for (int i = 0; i < 1000; i++) { 

        for (int j = 0; j < 50; j++) { 

            // ... 

        } 

    } 

The current loop nesting has the longest loop (to 1000) on the outside, and the 
shorter loop (to 50) as the innermost loop.  
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Loop interchange simply makes it the reverse nesting: 

    for (int j = 0; j < 50; j++) { 

        for (int i = 0; i < 1000; i++) { 

            // ... 

        } 

   } 

Considering sequential execution, the inner loop body is executed the same number 
of times, so there’s no difference. This also includes the inner loop’s conditional 
test and incrementer, which are different variables in the two examples, but also 
execute the same number of times (50,000 times).  

However, consider the different outer loops. The first example is 1000 iterations, 
whereas the second example’s outer loop is only 50 times. Hence, the loop 
reordering optimization of “shortest outer loop” and “longest innermost loop” has 
saved 950 of the outer loop’s calculations (i.e., loop test and incrementer).  

Any extra code that’s in the outer loop, either before or after the inner loop, would 
also be executed fewer times. 

There is also an advantage for vectorization. In the first example, we could possibly 
have 1000 vectorized operations of data size 50. In the interchanged loops, there 
are 50 operations on vectors size 1000. Hence, there is more opportunity for much 
larger vectorization gains in the second format with the longest inner loop. 

Loop Sentinel 

Loop sentinels are an optimization that removes the overhead of checking an array 
index or pointer scanning an array or pointer chain. The technique does this by 
adding a pretend extra element onto the end of the array, in a way that we can 
pretend to succeed. And since we’re guaranteed to always succeed, we don’t need 
to check for failure while scanning the loop. 

This technique is not particularly useful for vectorization, but is quite powerful for 
long sequential scanning of arrays. It also has the downside of requiring at least one 
writeable array element, so it cannot run on read-only arrays. 
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Example: Check Vector Negatives: Here’s the basic loop sentinel version that 
sets up a dummy success in v[n]: 

   bool aussie_vector_has_negative_sentinel(float v[], int n) 

   { 

        v[n] = -99.0;  // Dummy negative (BUG!) 

        int i = 0; 

        for ( ; /*GONE!*/; i++) { 

            if (v[i] < 0.0) break;  // Found negative 

        } 

        if (i == n) return false;  // Fake success 

        return true;  // Found a negative (for real) 

   } 

However, this is actually buggy, since “v[n]” is potentially an array overflow. A 
better version can manipulate the last valid element “v[n-1]” instead of modifying 
“v[n]”. Then, we have to remember to fix it before we leave town. And we also 
have to remember to check the last vector element that we temporarily overwrote 
wasn’t also a real success. 

    bool aussie_vector_has_negative_sentinel2(float v[], int n) 

    { 

        float save = v[n - 1];  // Save it! 

        v[n - 1] = -99.0;  // Dummy negative at end 

        int i = 0; 

        for ( ; /*GONE!*/; i++) { 

            if (v[i] < 0.0) break;  // Found negative 

        } 

        v[n - 1] = save;  // Restore it! 

        if (i == n - 1) { 

            // At the dummy (fake success) 

            if (save < 0.0) return true; // Must check 

            return false;   

        } 

        return true;  // Found a negative (for real) 

    } 

Loop Strip Mining (Loop Sectioning) 

Loop strip mining is a loop optimization that scans or “mines” various “strips” of 
an array. It is related to “loop tiling” on arrays in two dimensions, but strip mining 
only applies to processing one-dimensional arrays.  

Loop strip mining is also called “loop sectioning” because it breaks an array up into 
sections that are operated on. 
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For a basic example, consider a simple array initialization: 

    for (int i = 0; i < n; i++) { 

        arr[i] = 0.0f; 

    } 

Let’s assume we can parallelize this with 16 elements at a time (e.g., 512 bits total 
parallel processing, which is 16 separate 32-bit float variables). So, we want to 
process “strips” of length 16. For simplicity, let us assume that n is divisible exactly 
by 16, so there’s no leftover work after the main loop. 

    for (int i = 0; i < n; i += 16) { 

        // Initialize arr[i]...arr[i+15] in parallel 

    } 

Obviously, this is a dummy example, where memset would do better for zeroing 
the array. Also, this really looks exactly like “vectorization” to me, where we are 
vectorizing 512 bits at a time (16 floats), and indeed the research mentions 
vectorization as one application. But loop strip mining and vectorization are not 
exactly the same techniques, because loop strip mining is a more general idea with 
other applications. 

Loop Spreading 

Loop spreading is an optimization of two non-nested sequential loops that have 
different iteration ranges. Typically, this refers to where the end ranges differ 
significantly. If the loop ranges only differ by an off-by-one issue, then only loop 
normalization is required. 

Loop spreading modifies one of the loops, so that part of this loop fully overlaps 
with the other loop (i.e., ideally one loop “spreads out” further to match the other 
loop’s end bounds). Hence, after loop spreading has occurred, this subloop can be 
fused with the other loop, and possibly parallelized. The remaining iterations that 
are not overlapping then have to be addressed in a followup partial loop (only for 
one of the loops). 

Loop spreading mainly enables loop fusion as a followup optimization. For using 
loop fission on the two loops, it is not necessary to do loop spreading, since the 
two loops are already split apart, and each loop could already potentially be 
vectorized independently. 
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Loop Normalization 

Loop normalization is not directly an optimization, but is a preliminary loop 
transformation that can make further loop optimizations easier. Followup 
optimizations might be to fuse the two loops with loop fusion, or to parallelize each 
loop, such as with loop fission or vectorization. 

The goal of loop normalization is to make the loop iteration variables act across the 
same range. This applies to two sequential loops, rather than nested loops. Hence, 
loop normalization is needed when two loops in sequence are starting at different 
offsets (e.g., one is i=1 and another starts at i=0), or are finished at different 
endpoints (e.g., n versus n-1). 

If two loops have the same number of computations, but with different ranges, 
then one loop can be changed with an offset. For example, these loops differ with 
ranges 0..n-1 and 1..n: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 1; j <= n; j++) b[j] = 0; 

These can be adjusted to the same ranges with a “j+1” index offset, as follows: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j < n; j++) b[j+1] = 0; 

If the two loops have a different number of iterations, typically off by 1 or 2, then 
“loop peeling” can be used to unroll and split off one or two iterations and shorten 
the longer loop, so that both loops have the same number of iterations over the 
same range. For example, in this example, one loop is 0..n-1 and another 
is 0..n: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j <= n; j++) b[j] = 0; 

The way to normalize the loop ranges is to “peel” off the last iteration of the “j” 
loop: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j < n; j++) b[j] = 0; 

    b[n] = 0;  // Peeled 
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This example has peeled the longer loop to make it shorter. An alternative would 
be “loop spreading” to lengthen the shorter loop, such as by adding an extra 
padding element into the array. 

Normalizing two loops doesn’t change the number of arithmetic computations. 
However, once two loops have normalized ranges, it becomes easier to see 
opportunities for further optimizations such as loop fusion or loop fission. 

Loop Skewing 

Loop skewing is a somewhat mind-bending method to change nested loops to make 
them more parallelizable. This technique applies when there are two nested loops, 
but the inner loop is difficult to parallelize because of a dependency on the outer 
loop variable. The performance advantage from loop skewing is not directly its 
usage, but because skewing changes then make possible other loop optimizations, 
especially loop interchange, which reorders the inner and outer loop. 

The loop skewing solution is far from obvious. The range bounds of the inner loop 
are changed by “skewing” them by a factor based on the outer loop variable. And 
then, by some magical potion, this somehow breaks the dependence on the outer 
loop, and then the inner loop can run fast on a GPU. Who knew? 

As a simplistic example, consider two nested loops: 

    for (int i = 0; i < 1000; i++) { 

        for (int j = 0; j < 50; j++) { 

            arr[i][j] = something; 

        } 

    } 

We can skew the inner loop by adding a skew factor based on the outer loop 
variable (e.g., “i” or “i+1” or something similar). Add this skew factor to the 
ranges of j, but then subtract the skew factor (“i”) from any usages of the index 
“j” inside the inner loop’s body. 

    for (int i = 0; i < 1000; i++) { 

        for (int j = i; j < 50 + i; j++) { 

            arr[i][j - i] = something; 

        } 

    } 

Hence, j has changed from the range (0...50) to the skewed range (i...i+50), by 
adding the skew factor “i” to the start and end.  
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The use of “j” in the inner loop body has changed from “j” to “j-i” (i.e., 
subtracting the skew factor “i”). The result is a kind of skewed and “triangular” 
shape of i and j indices, but the actual arithmetic calculations are unchanged. 

This newly skewed code isn’t any faster, does exactly the same calculations on the 
50,000 elements of array arr, and indeed is actually worse because of the extra 
“50+i” and “j-i” computations. However, in some cases, doing this weird 
skewing transformation then allows us to follow up with a loop interchange 
optimization, switching the inner and outer loops. And I’m not even going to 
pretend to understand this, but there are situations where the non-skewed inner 
loop cannot be vectorized or interchanged, but after we’ve skewed the loop, then 
we can interchange it, and then we get via hocus pocus a different inner loop that 
can then be vectorized. Hopefully, the GPU knows what’s going on. 
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20. AVX Intrinsics 

What are AVX Intrinsics? 

AVX intrinsics are SIMD parallel instructions for x86 and x64 architectures. They 
are actually machine opcodes supported by the x86/x64 CPU, but are wrapped in 
the intrinsic prototypes for easy access from a C++ program. 

The main advantage of SIMD instructions is that they are CPU-supported parallel 
optimizations. Hence, they do not require a GPU, and can even be used on a basic 
Windows laptop. The main downside is that their level of parallelism is nowhere 
near that of a high-end GPU. 

There are multiple generations of AVX intrinsics based on x86/x64 CPU 
instructions. Different CPUs support different features, and exactly which intrinsic 
calls can be used will depend on the CPU on which your C++ is running. The basic 
AVX types are: 

• AVX — 128-bit registers = 4 x 32-bit float values 

• AVX-2 — 256-bit registers = 8 x 32-bit float values 

• AVX-512 — 512-bit registers = 16 x 32-bit float values 

• AVX-10 — 512-bit registers (with speedups) 

The AVX intrinsics use C++ type names to declare variables for their registers. 
The float types used to declare the registers in AVX using C++ all have a double-
underscore prefix with “__m128” for 128-bit registers (4 floats), “__m256” for 
256 bit registers (8 floats), and “__m512” for 512 bits (16 floats).  

Similarly, there are also register type names for int types (__m128i, __m256i, 
and __m512i), and additional types for “double” registers (__m128d, __m256d, 
and __m512d). 

AVX intrinsic functions and their types are declared as ordinary function 
prototypes in header files. The header files that you may need to include for these 
intrinsics include <intrin.h>, <emmintrin.h>, and <immintrin.h>. 
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Useful AVX SIMD vector intrinsics for float types include: 

• Initialize to all-zeros — _mm_setzero_ps, _mm256_setzero_ps 

• Set all values to a single float — _mm_set1_ps, _mm256_set1_ps 

• Set to 4 or 8 values — _mm_set_ps, _mm256_set_ps 

• Load arrays to AVX registers — _mm_loadu_ps, _mm256_loadu_ps 

• Store registers to  arrays — _mm_storeu_ps, _mm256_storeu_ps 

• Addition — _mm_add_ps, _mm256_add_ps 

• Multiplication — _mm_mul_ps (SSE), _mm256_mul_ps (AVX-2) 

• Vector dot product — _mm_dp_ps, _mm256_dp_ps 

• Fused Multiply-Add (FMA — _mm_fmadd_ps, _mm256_fmadd_ps 

• Horizontal addition (pairwise) — _mm_hadd_ps, _mm256_hadd_ps 

Note that the names of the intrinsic functions have meaningful suffixes. The “_ps” 
suffix means “packed-single-precision” (i.e., float), whereas “_pd” suffix means 
“packed-double-precision” (i.e., double). 

AVX Operations 

The main SIMD instructions are called “vertical” instructions, by convention. They 
take one vector and a second vector (e.g., both are 128-bit), apply an operation 
element-wise in parallel, and put the result into a third register. In other words, they 
return the result of a “pair-wise” or “element-wise” operation on two vectors into 
a third vector. 

For example, vertical addition requires two input vectors and will output a third 
vector with the sums. AVX-512 SIMD addition will add two 512-bit registers full 
of float values on a paired element basis (i.e., adds 16 pairs of 32-
bit float values), yielding a third 512-bit vector with the result (16 float values). 

Binary operations. The full list of binary AVX operations is very long. Supported 
AVX operations include: 

• Multiplication 

• Addition 

• Subtraction 

• Division 

• Maximum 

• Minimum 

• Fused Multiply-Add (FMA) 

• Bitwise operations 
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Unary operations. AVX unary intrinsics apply a particular function to all elements 
of an AVX register in parallel, and return the resulting register. Supported AVX 
unary operations include: 

• Clear to zero 

• Set to a constant 

• Casts 

• Conversions 

• Popcount (POPCNT) 

• Leading-zero count (LZCNT) 

Mathematical Functions. Simple float-to-float mathematical functions are 
effectively a type of unary operator. AVX supports a variety of functions with 
vector hardware instructions, such as: 

• Absolute value: abs 

• Error function: erf 

• Reciprocal 

• Rounding, ceiling, floor 

• Roots: sqrt (square root), cube root 

• Inverted roots (e.g., invsqrt) 

• Exponential: exp, exp10 

• Logarithm: log, log10 

• Trigonometric functions 

• Hyperbolic functions 

• Statistics (e.g., Cumulative Distribution Function) 

AVX Horizontal Intrinsics 

Horizontal operations refer to arithmetic across the values within one vector. AVX 
intrinsics exist to do “horizontal” operations across the same vector, such as adding 
horizontal elements of a vector, or finding the maximum of pairs of elements within 
a vector. 

Horizontal SIMD instructions are typically designated with a “h” prefix (e.g., 
“horizontal add” is “hadd”). More specifically, the intrinsic for 128-bit horizontal 
add is “_mm_hadd_ps” and it is “_mm256_hadd_ps” for 256-bits. 

However, do not make the mistake of assuming that these horizontal AVX 
intrinsics are a “reduction” of a vector down to a single float (i.e., vector-to-scalar). 
I mean, they really should do exactly that, but that would be too good to be true. 
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The horizontal intrinsic functions are still effectively “pairwise” operations for 
AVX and AVX-2, except the pairs are within the same vector (i.e., horizontal pairs). 
If you want to add all elements of a vector, or find the maximum, you will need 
multiple calls to these intrinsics, each time processing pairs of numbers, halving the 
number of elements you are examining at each iteration. Hence, for example, 
summing all the float values in a vector with AVX or AVX-2 uses a method of 
“shuffle-and-add” multiple times. 

Thankfully, AVX-512 actually does have horizontal reductions that process all the 
elements in their 512 bit registers. Hence, the 512-bit horizontal add uses a different 
naming convention and uses the prefix of “reduce add” in the intrinsic name 
(e.g., _mm512_reduce_add_ps is a summation reduction). In other words, this 
reduction operates in parallel on all 16 float values in an AVX-512 register, and 
the _mm512_reduce_add_ps intrinsic can add up all 16 float values in one 
operation. This horizontal reduction summation is useful for vectorizing functions 
such as average, and could be used for vector dot products (i.e., do an AVX-512 
SIMD vertical multiplication into a third vector of 16 float values, then a 
horizontal reduction to sum those 16 float values), although there’s an even 
better way with FMA intrinsics. 

Supported AVX horizontal operations for pairwise horizontal calculations (AVX 
or AVX-2) or vector-to-scalar reductions (AVX-512) include floating-point and 
integer versions, with various sizes, for primitives, such as: 

• Addition 

• Maximum 

• Minimum 

• Bitwise operations 

Portability Checking of AVX Versions 

The power of AVX support has changed over the years, with different CPUs having 
different capabilities, not only with AVX, AVX-2 and AVX-512, but also their sub-
releases. And it’s also a little unclear into the future, with reports that some of the 
newer Intel chips have AVX-512 disabled. 

If you write some code using AVX-512 intrinsics, and compile your C++ into an 
executable with the AVX-512 flags on, and then it runs on a lower-capability CPU 
without AVX-512, what happens? Do the AVX-512 intrinsics fail, or are they 
simulated somehow so that they’re slower but still work? Answer: kaboom on 
MSVS. In the MSVS IDE, if you try to call these intrinsics on a CPU that doesn’t 
support it, you get “unhandled exception: illegal instruction.”  
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In other words, the C++ compiler still emits the AVX-512 instruction codes, but 
they aren’t valid, so it excepts at runtime. 

Hence, the calls to AVX-512 are not emulated at run-time on lower-capability 
CPUs. And they aren’t checked, either. That’s up to you! 

Dynamic test required: Firstly, you cannot use the preprocessor. You can’t 
test #if or #ifdef for whether you’ve got AVX-512 in the CPU or not. You can 
use the preprocessor to distinguish between different platforms where you’ll 
compile a separate binary (e.g., ARM Neon for phones or Apple M1/M2/M3 
chipsets). But you cannot choose between AVX/AVX-2/AVX-512 at compile-
time, unless you really plan to ship three separate binary executables. Well, you 
probably could do this if you really, really wanted to. 

The other thing you don’t really want to do is low-level testing of capabilities. You 
don’t want to test a flag right in front of every AVX-512 intrinsic call. Otherwise, 
you’ll lose most of the speedup benefits. Instead, you want this test done much 
higher up, and then have multiple versions of the higher-level kernel operations 
(e.g., vector add, vector multiply, vector dot product, etc.) 

What this means is that you have to check in your runtime code what the CPU’s 
capabilities are, at a very high level in your program. Hence, it is important to check 
your platform has the AVX support that you need, such as via the “cpuid” 
intrinsic at program startup. Then you have a dynamic flag that specifies whether 
you have AVX-512 or not, and you can then choose between an AVX-2 dot 
product or an AVX-512 dot product, or whatever else, during execution. 
Obviously, it gets a bit convoluted when you have to dynamically choose between 
versions for AVX, AVX-2 and AVX-512 (not to mention all the AVX sub-
capabilities and also AVX-10 coming soon). 

Example: Basic AVX SIMD Multiply 

Let us do a basic element-wise SIMD multiply using AVX (version 1) and its 128-
bit registers. This will do a paired vector multiply an array of 4 float numbers 
(i.e.,4 x 32-bit float = 128 bits). Each float in the resulting array is a pairwise 
multiplication of the elements in the two operands. 

This is how SIMD instructions work, by operating on each element of the array 
(i.e., “pairwise” or “element-wise”). For example, a “vertical” multiply will take the 
4 float values in one input array, and multiply each of them by the 
corresponding float in the other input array of 4 float numbers, and then will 
return a resulting output array with 4 float values. 
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For testing, let us assume with want to create an AVX function that multiplies 
4 float values element-wise. The test code looks like: 

    float arr1[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    float arr2[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    float resultarr[4]; 

    // Multiply element-wise 

    aussie_multiply_vectors(arr1, arr2, resultarr, 4);   

Testing the results of the multiply as an element-wise multiply of each pair in the 
4 float values (using my home-grown “aussie_testf” unit testing function 
that compares float numbers for equality): 

    aussie_testf(resultarr[0], 1.0f * 1.0f);  // Tests 

    aussie_testf(resultarr[1], 2.5f * 2.5f); 

    aussie_testf(resultarr[2], 3.14f * 3.14f); 

    aussie_testf(resultarr[3], 0.0f * 0.0f); 

Here’s the low-level C++ code that actually does the SIMD multiply using the 
“_mm_mul_ps” AVX intrinsic function: 

    #include <xmmintrin.h> 

    #include <intrin.h> 

 

    void aussie_avx_multiply_4_floats( 

        float v1[4], float v2[4], float vresult[4]) 

    { 

        // Multiply 4x32-bit float in 128-bit AVX registers 

        __m128 r1 = _mm_loadu_ps(v1);   // Load floats 

        __m128 r2 = _mm_loadu_ps(v2); 

        __m128 dst = _mm_mul_ps(r1, r2);   // AVX SIMD Multiply 

        _mm_storeu_ps(vresult, dst);  // Convert back to floats 

    } 

Explaining this code one line at a time: 

1. The header files are included: <xmmintrin.h> and <intrin.h>. 

2. The basic AVX register type is “__m128” which is an AVX 128-bit 
register (i.e., it is 128 bits in the basic AVX version, not AVX-2 or AVX-
512). 

3. The variables “r1” and “r2” are declared as _mm128 registers. The 
names “r1” and “r2” are not important, and are just variable names. 
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4. The intrinsic function “_mm_loadu_ps” is used to convert the arrays 
of 4 float values into the 128-bit register types, and the result is “loaded” 
into the “r1” and “r2” 128-bit types. 

5. Another 128-bit variable “dst” is declared to hold the results of the 
SIMD multiply. The name “dst” can be any variable name. 

6. The main AVX SIMD multiply is performed by the “_mm_mul_ps” 
intrinsic function. The suffix “s” means “single-precision” (i.e.,32-
bit float). This is where the rubber meets the road, and the results of the 
element-wise multiplication of registers “r1” and “r2” are computed and 
saved into the “dst” register variable. It is analogous to the basic C++ 
expression: dst = r1*r2; 

7. The 128-bit result register variable “dst” is converted back to 32-
bit float values (4 of them), by “storing” the 128 bits into 
the float array using the “_mm_storeu_ps” AVX intrinsic. 

AVX Memory Alignment Issues 

The above example glosses over the issue of managing “alignment” of memory 
addresses on byte boundaries with the “alignas” specifier. Some of the AVX 
SIMD intrinsic calls require that addresses are 16-byte aligned (i.e., this is effectively 
128-bit alignment), which is not guaranteed by the C++ compiler. However, we’ve 
tolerated non-aligned addresses by using the “_mm_storeu_ps” intrinsic, which 
works with either aligned or non-aligned addresses. 

Note that alignment restriction requirements of AVX are somewhat in flux. Not all 
AVX intrinsics require alignment, and they are “relaxed” in many cases. There have 
also been some bugs in compiler toleration of non-aligned addresses in C++ 
intrinsics. Where required, the alignment needs are: 

• AVX-1 — 16-byte alignment (128-bit). 

• AVX-2 — 32-byte alignment (256-bit). 

• AVX-512 — 64-byte alignment (512-bit). 

Since we can sort out alignment at compile-time using the C++ “alignas” 
specifier and “aligned” type attributes, there is no performance penalty (except 
in terms of space) for ensuring greater compatibility across CPU platforms and 
compiler versions by preferring aligned addresses. 



David Spuler                                               238 
 

You can create your own macros to easily test pointer addresses for alignment by 
checking their remainder with the % operator. These examples use bitwise-and to 
replace the slow remainder operator: 

    #define aussie_is_aligned_16(ptr) \ 

          ((((unsigned long)(ptr)) &15ul) == 0) 

    #define aussie_is_aligned_32(ptr)  \ 

          ((((unsigned long)(ptr)) &31ul) == 0) 

Although our code to multiply 4 float values tolerates non-alignment, it’s a minor 
slug. The “_mm_storeu_ps” AVX intrinsic is slower if the addresses are not 
aligned, so we should fix the alignment for performance reasons. There’s also 
another “store” intrinsic to convert from the 128-bit vectors to 4 floats called 
“_mm_store_ps” (without the “u”) that runs faster, but does not tolerate non-
aligned float arrays. Actually, “_mm_storeu_ps” is supposed to be equally as 
fast as “_mm_store_ps” if the address is correctly aligned, so we can still use that 
intrinsic if we prefer safety, but we need to change the variables to be aligned on 
16-byte boundaries for a speedup. 

To ensure alignment in C++, there is an “alignas” specifier for variable 
declarations. We can use “alignas(16)” to force C++ to create the variables 
with 16-byte alignment of the address where they are stored. For example, our unit 
test harness code could ensure 16-byte alignment of all memory addresses via: 

    // Test with 16-byte alignment 

    alignas(16) float arr1[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    alignas(16) float arr2[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    alignas(16) float resultarr[4]; 

There are various non-standard alternatives to “alignas” in the various 
compilers. For example, MSVS has “__declspec(align(16))” with two prefix 
underscores, and GCC supports “decltype(align(16))”. 

The AVX code for an alignment-requiring version is not much different, with 
minor changes to the names of the C++ intrinsics: 

    void aussie_avx_multiply_4_floats_aligned( 

           float v1[4], float v2[4], float vresult[4]) 

    { 

        // Use 128-bit AVX to multiply 4x32-bit floats... 

        __m128 r1 = _mm_loadu_ps(v1);   // Load floats 128-bits 

        __m128 r2 = _mm_loadu_ps(v2); 

        __m128 dst = _mm_mul_ps(r1, r2);   // Multiply 

        _mm_store_ps(vresult, dst);  // Aligned version  

    } 
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Ideally we’d like to ensure that the function is only called with aligned addresses at 
compile-time. The first attempt is to declare “vresult” above as 
“alignas(16)” for type checking of alignment issues, but it fails for function 
parameters. Fortunately, there’s another way using type attributes: 

    __attribute__((aligned(16))) 

Another method is to define our own assertion that uses bitwise tests on the address 
instead: 

    #define is_aligned_16(ptr)  ((((unsigned long 

int)(ptr)) & 15) == 0) 

This tests the address is a number that is a multiple of 16 using bitwise-and with 15, 
but this is at runtime and costs extra cycles. 

AVX-2 SIMD Multiplication 

Here is the AVX-2 version of pairwise SIMD multiply with intrinsics for 256-bit 
registers, which is eight 32-bit float variables. 

    void aussie_avx2_multiply_8_floats( 

        float v1[8], float v2[8], float vresult[8]) 

    { 

        // Multiply 8x32-bit floats in 256-bit AVX2 registers 

        __m256 r1 = _mm256_loadu_ps(v1);   // Load floats 

        __m256 r2 = _mm256_loadu_ps(v2); 

        __m256 dst = _mm256_mul_ps(r1, r2);  // Multiply (SIMD) 

        _mm256_storeu_ps(vresult, dst);  // Convert to 8 floats 

    } 

This is similar to the basic AVX 128-bit version, with some differences: 

• The type for 256-bit registers is “__m256”. 

• The AVX-2 loading intrinsic is “_mm256_loadu_ps”. 

• The AVX-2 multiplication intrinsic is “_mm256_mul_ps”. 

• The conversion back to float uses AVX-2 intrinsic 
“_mm256_storeu_ps”. 
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AVX-512 SIMD Multiplication 

Here is the basic 16 float SIMD vector multiplication using 512-bits in AVX-
512. 

    void aussie_avx512_multiply_16_floats( 

        float v1[16], float v2[16], float vresult[16]) 

    { 

        // Multiply 16x32-bit floats in 512-bit registers 

        __m512 r1 = _mm512_loadu_ps(v1); // Load 16 floats 

        __m512 r2 = _mm512_loadu_ps(v2); 

        __m512 dst = _mm512_mul_ps(r1, r2); // Multiply (SIMD) 

        _mm512_storeu_ps(vresult, dst);  // Convert to floats 

    } 

Note that AVX-512 will fail with an “unhandled exception: illegal instruction” (e.g., 
in MSVS) if AVX-512 is not supported on your CPU. 

Example: AVX 128-Bit Dot Product 

The AVX instruction set has a vector dot product intrinsic that wraps an x86 dot 
product instruction. There are versions of the dot product intrinsic for AVX (128-
bit), AVX-2 (256-bit) and AVX-512 (512-bit). 

For basic AVX (128 bits), this is a full vector dot product of two vectors with 4 x 
32-bit float numbers in each vector. One oddity is that although the result is a 
floating-point scalar (i.e., a single 32-bit float), it’s still stored in a 128-bit register, 
and must be extracted using the “_mm_cvtss_f32” intrinsic.  

The example code looks like: 

    float aussie_avx_vecdot_4_floats(float v1[4], float v2[4]) 

    { 

        // AVX dot product: 2 vectors of 4x32-bit floats 

        __m128 r1 = _mm_loadu_ps(v1);   // Load floats 

        __m128 r2 = _mm_loadu_ps(v2); 

        __m128 dst = _mm_dp_ps(r1, r2, 0xf1); // Dot product 

        float fret = _mm_cvtss_f32(dst);  // Extract float 

        return fret; 

    } 
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Example: AVX-2 256-Bit Dot Product 

Here is my attempt at the 256-bit version of a vector dot product of 8 float values 
using AVX-2 instructions, which seems like it should work: 

    float aussie_avx2_vecdot_8_floats_buggy( 

        float v1[8], float v2[8]) 

    { 

        // AVX2 dot product: 2 vectors, 8x32-bit floats 

        __m256 r1 = _mm256_loadu_ps(v1); // Load floats 

        __m256 r2 = _mm256_loadu_ps(v2); 

        __m256 dst = _mm256_dp_ps(r1, r2, 0xf1); // Bug! 

        float fret = _mm256_cvtss_f32(dst);  

        return fret; 

    } 

But it doesn’t! Instead of working on 8 pairs of float numbers, it does the vector 
dot product of only 4 pairs of float values, just like the first AVX code.  

The problem wasn’t related to alignment to 256-bit blocks, because I added 
“alignas(32)” to the arrays passed in. It seems that the “_mm256_dp_ps” 
intrinsic doesn’t actually do 256-bit dot products, but is similar to the 128-bit 
“_mm_dp_ps” intrinsic that does only four float numbers (128 bits).  

These computations are based on the VDPPS opcode in the x86 instruction set for 
32-bit float values and there is VDPPD for 64-bit double numbers. However, it 
seems that “_mm256_dp_ps” is not using the 256-bit version.  

Or maybe my code is just buggy! 
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21. Parallel Data Structures 

Bit Vectors 

Bit vectors are conceptually an array of N bits with 0 or 1 values. The term “bit set” 
is almost synonymous, but has a slightly different meaning. A bit vector maps a 
number at the index position to its binary bit value, whereas a bit set specifies 
whether a number is in a set of numbers. Both interpretations are valid, depending 
on the application, and the implementation of the data structure is almost identical. 

In AI applications, a bit vector may represent a set of weights with 0 or 1 values, 
such as with binary quantization or XNOR neural networks. The operation of dot 
product on two bit vectors can be performed arithmetically using bitwise arithmetic. 

Sparsity optimizations are another application of bit vectors. Pruning can often 
create “sparse” weight matrices, with lots of zeros and very few non-zero weights. 
A bit vector can then efficiently represent whether a weight in a vector has a non-
zero value, which is then used to avoid doing any computations on zero values. An 
alternative to bit vectors for sparsity is to use permutation arrays of indices,. 

Another application of bit vectors occurs in Bloom filter data structures, which are 
a probabilistic hybrid of hash tables and bit vectors. In this usage, a bit set represents 
whether an input number is found in the set of already-mapped numbers. 

In practice, bit vectors or bit sets are often implemented as arrays of unsigned 
integers, with the bits packed into each integer. If the underlying unsigned type is 
32-bits or 64-bits, then many bitwise operations on bit vectors can be performed 
32 or 64 bits at a time, achieving significant parallelism without using any form of 
hardware acceleration beyond basic CPU instructions. Use of AVX SIMD 
instructions can vectorize many operations without a GPU. But it absolutely flies 
when you use a GPU with bit vectors, because that’s two levels of parallelization. 

There are several pre-built C++ bit set classes that can be considered: 

• std::bitset<N> (in <bitset>) 

• std::vector<bool> 

• boost::dynamic_bitset<> 
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If the maximum size of the bit vector is known at compile-time, which is often the 
case even with very big AI models, then std::bitset is a good choice. If not, 
then std::vector<bool> or boost::dynamic_bitset<> are good choices 
for dynamic-sized bit vectors. Alternatively, you can build your own bit vectors, if 
there is a particular need to hand-code them or if you just want some fun. 

Permutation Arrays 

Most of the vectors in AI engines are not just random lists of numbers. Rather, they 
are (conceptually) an array of the probabilities of output words, where the position 
in the vector indicates which word. So, if we have our logits array, 
then logits[0] is the probability of “the” whereas logits[1] is the 
probability for “cat”, and so on, up to about 50,000, which is a common 
vocabulary size for LLMs. 

Problems arise if we want to sort our probabilities in the logit array, and we need 
this for our decoding top-k algorithm. We can’t just sort the vector of probability 
numbers, because we’ll lose track of which probability maps to which token 
number. 

Permutation arrays to the rescue! A permutation array is an array that is the same 
size as some other array, but maps to the indices of the other array. A permutation 
array for our vocabulary has 50,000 integers, each of which is the index into other 
arrays. 

The downside of permutation arrays is that they introduce inefficiency in both space 
and time. Space usage is increased by having two vectors. The time cost to access a 
vector element increases, too. Rather than just looking up the probability for the 
nth word in the logits (i.e., “prob=logits[n]”), we have a two-step procedure: 

1. Look up the index in the nth element of the permutation array (i.e., 
“i=permut[n]”), 

2. Use that index to look up the probabilities in the main logits array (i.e., 
“prob=logits[i]”). 

So, it’s bigger and slower. Some rescue. 

However, permutations can be valuable if it allows us to do much less arithmetic 
overall, which is the case with “sparse” arrays where most elements are zero. This 
is why permutation arrays are used for LLM sparsity optimizations, but not in 
normal practice. 
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Sorting with a Permutation Array: The way to sort another array, indirectly via a 
permutation array, is shownfor the top-k decoding algorithm. The basic idea is: 

1. Set up the identity permutation. 

2. Sort using an indirect procedure: (a) compare elements in the main array 
indirectly accessed via the permutation array, (b) swap the indices in the 
permutation array (not changing the main array). 

So, the original array doesn’t actually get sorted with only the permutation array 
changing. If we want to print out the main array in a sorted list, we have to do so 
via the permutation array. The original main array is unsorted if we access it directly. 

Sparsity with Permutation Arrays. Sparsity is an optimization where most of the 
weights have been “pruned” to zero, and only a small percentage remain non-zero. 
This saves storage space, and can also run much faster. The basic vector dot product 
kernel only needs to calculate with non-zero weights, so we want a way to avoid 
processing all of the many zero weights. Again, permutation arrays are the solution! 

Sparse vectors (or matrices or tensors) can be stored as parallel arrays of: 

• Non-zero weights only 

• Permuted integer index of that non-zero weight in the original vector 

These two arrays are much shorter than the original vectors if there is high sparsity. 
If sparsity is 90%, then 10% of numbers are non-zero, and the permutation 
approach uses two arrays, so it is 20% of the original size. The cost of doing a sparse 
dot product has reduced from the full length of the original vectors, down to the 
average sparsity factor (i.e., how many non-zero values). In other words, the 
number of multiplication computations goes down to 10% FLOPs, although there’s 
the extra permutation calculation, so it’s might seem like it’s 20%, but we can often 
hardware-accelerate the permutation array step in CPU or GPU architectures. 
Hence, sparse vector dot products are fast. Calculation of the vector dot product 
for AI inference need only multiply using the smaller number of non-zero weights. 

Can we vectorize permuted arrays for hardware acceleration? Short answer: yes. 
Permutations can be vectorized with hardware acceleration in both CPU and GPU 
versions. The C++ AVX “gather” (load) and “scatter” (store) intrinsics work for 
x86 CPUs. Different GPU primitives are available for permuted arrays. 

Sparsity doesn’t really work without permutations. A raw full-size vector containing 
lots of zeros doesn’t vectorize well, because it still sends all zeros for processing. A 
permuted index of sparse values works better because it only uses non-zero values. 
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Vector Hashing 

Vector hashing is needed in various parts of an AI engine as a speedup. There are 
various AI research papers on using hashing for various computations involving 
vectors and tensors of higher dimensions. Implementations of such algorithms are 
available in open source and commercial “vector database” products that you can 
use. Some of the applications for LLMs include inference caching, embeddings, and 
RAG architectures. 

But how do you hash a full-length vector? Or a matrix? It’s a complicated theoretical 
area. One of the main techniques is Locality-Sensitive Hashing (LSH), which is 
hashing to find vectors that are “close” in n-dimensional space. 

One of the interesting research areas for vector hashing is total precomputation of 
vector dot products. Think about precomputation of vector dot products in AI 
inference. If you could hash the two vectors, then you could replace the main 
bottleneck in AI inference with two hash lookups. Is there a way to efficiently 
convert a vector dot product operation on two vectors into a hash lookup, thereby 
avoiding all those multiplications? What about speedup of matrix multiplication by 
hashing? 

Remember that you can pre-compute anything about the weights before inference, 
because they don’t change during inference. Hence, one of the vectors could 
potentially be pre-hashed offline. Maybe you could even use some type of “perfect 
hashing” for those vector hashes, if you’ve got a big enough compute budget. But 
you can’t pre-hash both of the vectors or pre-compute the dot product, because 
the other vectors are dynamically calculated along the way, dependent on user 
inputs. This is being examined by advanced researchers, and is a work in progress. 

Perfect Hashing 

Perfect hashing aims to achieve collision-free O(1) hashing at runtime, by investing 
a lot of offline compute budget to find an optimal hash function for a set of static 
data. There are many possible hash functions, and some are better than others. 
Perfect hashing tries to find an optimal hash function within the search space of 
possible methods. Mostly, it’s by trial-and-error. Searching for a perfect hash 
function typically uses a brute-force and computationally expensive method of 
simply trying multiple hash functions and testing them for collisions. 

Perfect hashing only works in the situation where all of the possible keys are known 
in advance (i.e., static data). Interestingly, this is exactly the situation with AI model 
vocabularies! 
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Hence, the idea of perfect hashing can be used to improve the performance of a 
hash table in the tokenizer. The general concept is that different hash tables are 
tested with various different meta-parameters (e.g., the hash table size, and 
multipliers in the hashing function). So, you can test various different hash 
functions against the 50,000 known tokens in the vocabulary, until you find a 
“perfect” one where there are no clashes.  

Bloom Filters 

Bloom filters are a probabilistic data structure based on a combination of hashing 
and bit vectors. Multiple hash functions are computed for each key, and this is used 
to set bitflags, as described in more detail below. Bloom filters are mentioned in 
various research papers on AI, but are not yet used much in industrial AI 
applications. Perhaps they should be, as they seem very efficient. 

Like hashing, Bloom filters have been used as a data structure to speed up neural 
network inference. However, much of the research literature about Bloom filters is 
about a different topic: Weightless Neural Networks (WNNs). WNNs have a 
different type of neuron based on binary bits, rather than matrix multiplications. 
These bitflag neurons can be approximated using Bloom filters.  

How do Bloom Filters work? Given a key, multiple hash functions are calculated 
for that key, and a binary flag is set in a bitflag table for each of those hash offsets. 
In this way, an input key maps to a pattern of multiple bits. 

The Bloom filter lookup for a key value works as follows: To test whether a key is 
found, the multiple hash functions are computed, and then the bitflag table is 
analyzed to see if all those bits are set. If any of the bits are missing, the key is not in 
the Bloom filter. If all of the bits are found, the key is probably in the Bloom filter, 
but it may also be that other keys have coincidentally set all those bits (a “false 
positive”), so it is not 100% guaranteed to be present. 

If a probabilistic speedup is good enough, then a Bloom filter is all you need. For a 
100% accurate table lookup, adding a second different type of backup data structure 
needs to be queried to confirm. Hence, the Bloom filter is a fast test to see if a key 
is not in a set, but a slow test if the key is found. This is an example of a “common 
case first”, where fast computations may skip more involved computations. 

The computational complexity of Bloom filters is constant, but not as fast as 
hashing. A hash filter uses only a single hash function, with O(1) lookup. However, 
a Bloom filter uses multiple functions, k, so it has O(k) lookup complexity. 
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22. Lookup Tables & 

Precomputation 

Precomputation with Lookup Tables 

Look-up tables (LUTs) are a well-known simple data structure for optimizing code. 
They have been used to optimize neural networks in various ways. Some examples 
include: 

• Precomputed activation functions 

• Zero-multiplication networks 

• Approximation of non-linear functions 

Precalculation or precomputation is a code optimization where results are partially 
or fully calculated ahead of time. This method is similar to caching and computation 
reuse but refers to calculations being performed long before they are needed, often 
at program startup or compile-time, and stored in lookup tables. Like caching, this 
method trades extra space for time. 

Vectorization of LUTs is possible with hardware acceleration primitives that 
support parallel memory accesses using integer indices. For example, the x86 CPU 
with AVX intrinsics has a set of “gather” instructions for doing indexed lookup 
that can be used to load from a LUT into the internal registers, and “scatter” 
instructions for storing the registers back to an indexed LUT. 

Typical precalculations are those where the results are computed at program 
initialization or compile-time. The best methods generate the results at compile-
time, and are simply loaded as data, such as numeric constants or pre-initialized data 
arrays. There are multiple ways to do this: 

• Program startup initialization 

• Lazy evaluation 

• Binary data file 

• Precompiled source code 
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One method for precomputation of larger amounts of data in an array or lookup 
table is to perform the initialization dynamically at program startup. A lookup table 
can be populated with the required results, before the main logic of the program 
begins. Or alternatively, the idea of “lazy evaluation” allows storing the 
precomputation into a lookup table only when the program first needs the data. 

A faster alternative is to calculate all this data offline before program startup, and 
store the results in a binary data file. This data file can then be loaded into an array 
at program startup, without needing to perform any of the arithmetic computations. 
Whether this is beneficial depends on the cost of the computations versus the cost 
of file loading. 

The logical extension of the precomputation method for a large number of numeric 
results is to write special C++ code that performs these calculations, but then 
outputs the results into a text file in the exact format of a C++ source code file 
(rather than a data file), that declares a global array name and the numeric values. 
This auto-created C++ code is then linked with your program. 

Example: LUT Precomputation for sqrt 

Let’s say that you want to optimize a slow non-linear function like “sqrtf” (or 
“expf” or “logf”). These are good candidates for optimization because of their 
non-linearity. 

The first point is that you’d better do a really good job, because there are actually 
hardware instructions for these common math functions, even in x86 architectures. 
So, you could easily optimize this into a table lookup, and find that your C++ code 
is still slower than the single CPU instruction that’s called by the standard C++ 
library versions.  

Hence, investigate the C++ intrinsic functions for common math functions before 
you assume that you can do better than electrons zipping through silicon. 

This example investigates precomputing “sqrtf” even though that may not be as 
fast as hardware-acceleration. However, the same ideas apply to precomputing 
more sophisticated derivative functions, such as Softmax and activation functions, 
which are not hardware-supported (or not yet, anyway). The same general ideas 
apply. 
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The basic method for table lookup optimization is: 

• Declare a big array (the bigger the better). 

• Run a loop sending every value to the real “sqrtf” function. 

• Store each result in the big array. 

• Now you have a precomputed table of all possible values. 

• Later, use an array index lookup to compute the function fast. 

How is than any faster? I mean, we’ve just called “sqrtf” a bazillion times with 
numbers that we probably won’t ever need. Yes, there is extra cost, and we are 
running slower during program initialization. There are at least two ways to fix this: 

1. Load the array values from a pre-built binary data file instead, or, 

2. Precompile the array data into a C++ source code file. 

However, this complaint underestimates just how many times the code may call 
these functions. Even with this startup cost, once that is all done and dusted, we 
have a big array of precomputed data that we can use to speed up the program 
execution, which is our main goal. And in a production environment, any extra 
startup cost is hopefully amortized over many executions. 

Example: Precomputing sqrt of integer: For simplicity, we’re going to first 
assume that we’re computing a float square root of integers. The function we are 
precomputing is “int-to-float” type. This makes it easier, because the int can 
be used as an array index. 

Here’s my big array with about 65,000 entries: 

    #define AUSSIE_SQRT_PRECOMP_MAX (1u<<16) 

    float g_sqrt_precomp_table[AUSSIE_SQRT_PRECOMP_MAX]; 

Here’s the unoptimized function “int-to-float” version of “sqrtf” that we are 
planning to precompute: 

    float aussie_sqrtf_basic_int(int x) 

    { 

        return sqrtf((float)x); 

    } 
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Here’s the initialization call to the precomputation routine, sending in the array, the 
size N, and the function pointer: 

    aussie_generic_precompute_int( 

        g_sqrt_precomp_table,   // Big array 

        AUSSIE_SQRT_PRECOMP_MAX,  // N 

        aussie_sqrtf_basic_int    // Function pointer 

    ); 

And here’s the code to run the big precomputation loop: 

    void aussie_generic_precompute_int( 

          float arr[], unsigned int maxn,  

          float (*fnptr)(int)) 

    { 

        for (unsigned int i = 0; i < maxn; i++) { 

                arr[i] = fnptr(i); 

        } 

    } 

So, that’s all there is to the startup initialization of the lookup table. Once this 
function returns, we now have a big array full of data. Here’s what the new 
optimized “sqrtf” looks like: 

    float aussie_table_lookup_sqrt(int i) 

    { 

        return g_sqrt_precomp_table[i]; 

    } 

And we can either make that function “inline” or use a C++ preprocessor 
macro: 

    #define AUSSIE_TABLE_LOOKUP_SQRT_BASIC(i) \ 

         ( g_sqrt_precomp_table[(i)] ) 

So, here are a few provisos about this code: 

1. Might be slower than sqrt in hardware (needs benchmarking). 

2. Unsafe array index accesses (e.g., crashes on negatives or larger 
numbers). 
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3. unsigned int types might overflow and spin infinitely for 
precomputing tables of size “1<<32” (need to change to unsigned 
long). 

4. The memory size of the precomputed table for 1<<16 is already about 
262k (65k times 4 bytes). 

Float-to-Float Precomputation 

Using a precomputed table lookup for a float-to-float function is more complicated 
than integers. However, this is also the main approximation needed for non-linear 
functions, or even the basic math library functions like sqrtf or expf or logf. 

Why is it tricky? The reason that float inputs are more difficult is that we need to 
convert a float into an array index in order to look it up. For example, we could 
try type casts: 

   int offset = (int)f; 

But that limits us to only precalculating values for 1.0, 2.0, 3.0, etc. Our 
approximation works poorly on any fractions, and we also haven’t limited the array 
index to a fixed finite range, so it won’t work for any negative values or very large 
positive values. And the type cast of a float is also slow! 

Scaled Multiple: Another idea is that we could scale it upwards to get more 
decimals: 

   int offset = (int) (f * 1000.0f); 

This approach at least gives us 3 decimal places: e.g., 1.234 or 23.456, or similar. 
We will still have to check for negatives and large values to bound it. But again, this 
is even slower! 

Bitwise Floating-Point Truncations: The above truncation via a floating-point 
scaled multiple is not very fast. Twiddling the bits is much faster. For example, 
when we have a standard 32-bit float type, it has 1 sign bit, 8 exponent bits, and 
23 mantissa bits. This is from left-to-right, with the sign bit as the most significant 
bit, and the low-end mantissa bits are the least significant bits. Remember that this 
is like Scientific notation: 

• Number = Mantissa x 2 ^ Exponent 
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Also, the sign bit makes it all negative, if set. Note that exponent in 8-bits encodes 
the numbers -128 to +127, so that ranges from very small 2^-128 near-zero values, 
to very huge 2^127 sized values. 

If the mantissa was in decimal, and it was “1234567” and the exponent was “17” 
then we’d have: 

• Number = 1.234567 x 10^17 

If the mantissa was 23 bits, it’s actually binary digits, with about 3 binary digits per 
decimal digit, so a 23-bit mantissa is about 7 or 8 decimal digits. Note that the 
mantissa is actually 24 bits, not 23, because there’s an extra “implicit one” mantissa 
bit, not that it changes the above calculation, but you needed to know that for C++ 
trivia night. 

So, if we think about it for a year or two, it becomes obvious that the rightmost bits 
of the mantissa are simply the rightmost digits in “1.234567”, and if we truncate 
some of the rightmost bits, it’s like truncating a very small fraction (e.g., “1.234567” 
becomes “1.2345” or whatever). 

Hence, a first idea is just to cut off 2 of the 4 bytes of a 32-bit float. This leaves 
us with 1 sign bit, 8 exponent bits, and 7 mantissa bits (plus 1 implied bit makes 8 
mantissa bits). In decimal, the 8-bit mantissa now encodes only about 2 or 3 decimal 
digits, as if we’ve truncated “1.234567” to “1.23”. 

Incidentally, congratulations, you’ve created “bloat16” type, which is what Google 
did with TPUs, making a 2-byte float format with 1 sign bit, 8 exponent bits, and 
7 stored mantissa bits. So, now you can get into your blue telephone booth, time 
travel back a decade, file a patent, and retire on your royalties. If you’re ever a 
contestant on Wheel of Fortune you probably won’t need to know that the “b” in 
“bfloat16” stands for “brain float” and that is such a great name. But I digress. 

Anyhow, this idea actually works for precomputation. A 2-byte integer 
in bloat16 format is easy to extract from a 4-byte FP32 float (i.e., the uppermost 
two bytes). The trick for bitwise processing is to convert the float to unsigned 
int, because the bitwise shift operators don’t work on float (it’s planned for 
C++37, as I heard at my fungus collector’s club trivia night). 

   float f32 = 3.14f; 

   unsigned u32 = *(unsigned int*)&f32; 
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Extracting the top-most 2 bytes (16 bits) is simply a right bitshift: 

   unsigned ubf16 = ( u32 >> 16 ); 

Note that here’s a good reason that we had to use “unsigned” integer type. The 
right bitshift operator (>>) has undefined behavior on negatives, so “int” type 
wouldn’t work predictably (or portably) if the floating-point sign bit was set. 

The result is a 16-bit unsigned integer to use as the array index. Hence, there are 
only 1<<16=65,536 entries in our precomputation table. Assuming we store 
results as 4-byte float values, this makes the precomputation array’s memory size 
about 262kb. What’s more, it works for negative float numbers, because the sign 
bit is still part of that shemozzle, and we also don’t need to check any minimum or 
maximum bounds, because it works for all 32-bit float numbers. 

Precomputing with 24-Bit Lookup Tables: Interestingly, none of the above 
code is especially tied to 16-bit sizes. The bfloat16 version truncates 32-bit float 
to 16-bit by truncating the rightmost 16 mantissa bits. But we can actually choose 
to keep however many mantissa bits we like. The trade-off is that more mantissa 
bits increase accuracy, but at the cost of needing a much bigger precomputation 
array (doubling the storage size for each extra bit). 

Let’s try only cutting the rightmost 8 mantissa bits, leaving us with 24 stored bits 
total (i.e.,1 sign bit, 8 exponent bits, and 15 stored mantissa bits). The mantissa bits 
reduce from 23 to 15 (plus one implied bit makes 16), so this now stores about 5 
decimal digits (e.g., “1.2345”), giving quite good precision on our results. When I 
tested the 16-bit version, it had some reasonably large errors of almost 0.1 in 
computing sqrt, whereas this 24-bit version has much lower errors, as expected. 

Code changes are minor. The bitshift operations simply change from 16 bits to 8 
bits (i.e.,32-24=8 bits). This is the precomputation loop for 24 bits: 

    void aussie_generic_precompute_24bit_float( 

           float farr[], unsigned int maxn,  

           float (*fnptr)(float)) 

    { 

        for (unsigned int u = 0; u < maxn; u++) { 

                unsigned int unum = (u << 8u);  // 32-24=8 

                float f = *(float*)&unum; 

                farr[u] = fnptr(f); 

        } 

    } 
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And this is the call to the precomputation function in the startup phase: 

    aussie_generic_precompute_24bit_float( 

      g_sqrt_float_24bit_precomp_table, // Bigger array 

      (int)AUSSIE_SQRT_24bit_MAX,   // 1 << 24 

       aussie_sqrtf_basic_float     // Function pointer 

    ); 

The table lookup routine also similarly shifts 8 bits, rather than 16, but is otherwise 
unchanged: 

    float aussie_table_lookup_sqrt_24bit_float(float f) 

    { 

        unsigned u = *(unsigned int*)&f; 

        u >>= 8;  // 32-24=8 bits 

        return g_sqrt_float_24bit_precomp_table[u]; 

    } 

Note that this only works if we are sure that both “float” and “unsigned int” 
are 32-bits, so we should check that during startup with some assertions 
via static_assert. If we are sure of that fact, then not only will it work, but we 
don’t also need to check the array bounds. It won’t try a negative array index, and 
won’t overflow no matter what bit pattern we send it in as a float. 

But there is one problem. If we send the fast table lookup version the 
special float value of NaN (“not a number”), then the table lookup routine will 
actually return a valid numeric answer, which probably isn’t what we want. Maybe 
we need to add a check for that special case, and this needs more testing. 

The new size of the precomputation array is 2^24=16,777,216, so we have 
about 16.7 million results If our results are 32-bit float values, 
our bloat16 precomputed array above requires about 262kb, and the new size 
with 24-bits is a lookup table (array) of about 67 megabytes. It wouldn’t have 
worked on my old TRS-80 CoCo in 1986, but it’ll work nowadays. 
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Precalculating C++ Source Files 

One way to improve on the precomputation of a big array is to skip it entirely during 
startup by writing a lot of code. It’s like using an AI coding copilot, only it’s not 
really. I mean, come on, the day an AI writes better code than me is the day that I 
retire to the hologram beach with my robot dog companions. 

The idea here is to write a program to generate a C++ source file that contains the 
global precomputed lookup table. Yes, it’s a C++ program that creates part of a 
C++ program, which is almost like your AI has become self-aware, only one step 
away from Skynet. Well, maybe not, it’s just a dumb C++ program written by a 
dumb human creating some dumb data. 

Anyway, this auto-generated C++ code can be compiled and linked into your C++ 
program, and used like a global array of data in other parts of the program. Zero 
calculations are required at runtime, and the data can be read-only. 

The benefit is that this auto-generated code method does not even require the time 
cost of startup initialization for any precomputations. There’s not even the cost of 
data file loading. Instead, the data is auto-loaded by the linker-loader during 
executable file instantiation (i.e., when the user starts the app). The only downsides 
for the user are that the size of the executable program increases, which means 
more disk space usage, and that application program startup may take longer and it 
will use more memory (regardless of whether it ever needs this precomputed data). 
Also, various offline tasks take longer for the software developers, such as 
compilation and linking for testing, which is why we bill per hour. 

I tried this out for precalculating GELU with a 24-bit table. The C++ source file 
was size 514k for 24-bit precomputation table of size 1<<24. This is what the auto-
generated source code should look like: 

    // Precomputed code: GELU, "gelu_precomp_24bits.cpp" 

    float g_gelu_table_precompute_24bits[] = {  

    0f, 

    1.793662034335765850782373866611092648039e-43f, 

    3.587324068671531701564747733222185296077e-43f, 

    5.380986103007297552347121599833277944116e-43f, 

    7.174648137343063403129495466444370592155e-43f, 

    ... 

    ... 

    }; 
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Here’s the code to generate the code to generate the code to generate the code: 

   void aussie_generic_setup_table_FP32_24bits_PRINT_SOURCE(  

        // Print C++ of 24-bits GELU precomputed table  

        char* nickname, char* outfname, 

        float (*fnptr)(float),  // e.g., GELU 

        int maxn,  // e.g. 1<<24 

        float arrout[]  // store array (optional, can be NULL) 

    ) { 

        if (!fnptr) { aussie_assert(fnptr); return; } 

        // Generate C++ source code so we can pre-compile  

        // the precomputed GELU table (24-bits). 

        // There are 2^24 = 16.7 million numbers... 

        FILE* fp = stdout; 

        bool writingfile = false; 

        bool add_commented_number = true; 

        if (outfname && *outfname) { 

            fp = fopen(outfname, "w"); 

            if (!fp) { aussie_assert(fp); return; } // fail 

            writingfile = true; 

            add_commented_number = false;  // No comments  

        } 

        unsigned int u = 0; 

        fprintf(fp,  

            "// Precomputed table source code: %s, \"%s\"\n", 

            nickname, outfname); 

        fprintf(fp,  

            "float g_gelu_table_precompute_24bits[] = { \n"); 

        char numbuf[5000] = ""; 

        for (; u < maxn /*1<<24*/ ; u++) {  // For 2^24 =16.7M 

                // Zero the least significant 8 mantissa bits 

                unsigned int uval = u << 8;   

                float f = AUSSIE_UINT_TO_FLOAT(uval); 

                float g = fnptr(f);  // Call GELU or whatever 

                if (arrout) arrout[u] = g; // Store data 

 

                // Format: %g means the smaller of %e or %f 

                // ... %e is exponent format (scientific-like) 

                char* buf = numbuf; 

                // %g (Number) and suffix "f" (constant type) 

                sprintf(buf, "%40.40gf", g);   

                if (strchr(buf, 'n')) { 

                    // Nan or "-nan" ...  

                    strcpy(buf, "0.0 /*nan*/");  // Dummy value 

                } 

                // Remove prefix padding spaces... 

                while (buf[0] == ' ') buf++; 

 

                // Remove suffix zeros ... 

                int len = (int)strlen(buf); 

                if (buf[len - 1] == 'f') len--; // skip suffix f 

                if (buf[len - 1] == '0') { 

                    while (len > 5) { 
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                        if (buf[len - 1] == '0' 

                            && isdigit(buf[len - 2]))  

                        { 

                            if (buf[len] == 'f') { 

                                buf[len - 1] = 'f'; // leave 'f' 

                                buf[len] = 0; 

                            } 

                            else { 

                                buf[len - 1] = 0;  // remove it 

                                buf[len] = 0; 

                            } 

                            len--; 

                        } 

                        else break; 

                    } 

                } 

 

                if (add_commented_number) { 

                        fprintf(fp, "%s // (%40.40f) [%u] \n", 

                                        buf, f, u); 

                } 

                else {  // No comments... 

                        fprintf(fp, "%s,\n", buf); 

                } 

 

                // Progress update 

                if (u % 100000 == 0 && u != 0) { 

                    // Progress to stdout... 

                    if (writingfile)  

                        fprintf(stdout, "%u -- %s\n", u, buf);   

                    // Comment occasionally 

                    fprintf(fp, "// U= [%u]\n", u);   

                } 

        } 

        fprintf(fp, "}; \n");  // Close initializer... 

        if (fp && fp != stdout) fclose(fp); 

    } 

Conclusions on Source Code Generation: Does it work? Yes and no. It builds 
the output file quite quickly, zipping through 1<<24 computations and writing to 
disk. But I can’t get this 24-bit version with its 500k CPP source file to actually 
compile in the Microsoft Visual Studio IDE. Maybe it works on Windows 
command-line or Linux GCC, but I haven’t tried. 

Anyway, this self-generating code idea is certainly quite workable for table lookups 
of approximations for FP16 numbers (16-bit half-precision floating-point), because 
the lookup table needs to “only” contain 2^16=65,536 numbers. This is about a 
200k C++ source file in plain text, and creates linked data of about 65k times 4 
bytes equals about 256k space usage. This would use half that space if you also store 
the computation as 16-bit numbers rather than 32-bit floats or integers. 
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Appendix 1: C++ Slug Catalog 

Slug Hunting Advice 

This appendix is about speeding up your C++ programs through general 
improvements to sequential or parallel coding. Before we begin with anything that’s 
actually useful, I have to introduce the obligatory wrist-slapping politically-correct 
deslugging advice for programmers. Hence, here are some general nuggets of advice 
when attempting to speed up your program: 

• Profile twice, code once. Performance profiling tools exist for a reason. 

• Don’t micro-optimize. Unless you’re into that kind of thing. But really, try 
to sit on your hands. 

• Do macro-optimize. Think about your data structures and algorithms. 

• Optimizing introduces new bugs. 100% guaranteed! Don’t optimize the 
night before your release. Re-run your test suite. 

• Don’t optimize exception handling. Tweaking rarely-executed code is a 
poor use of your geniousness. 

• Use open source third-party libraries that have already been optimized by 
others. 

Or just ignore that advice and go crazy. It’s just too much fun optimizing when the 
alternative is dreary debugging. Pro tip: it’s even more fun writing a book on 
optimizing! 

Where to hunt slugs? Some of the common large-scale issues with coding 
inefficiency in typical C++ programs include: 

• Function call hierarchies 

• Nested loops 

• Overuse of memory allocation 

• Constructor and destructor inefficiencies 

• Inefficient algorithms (e.g., linear search of arrays) 

• Unnecessary overhead or wrappers 

• Recursion. After you’ve coded up all your university assignments (Tower 
of Hanoi, anyone?), please forget recursion exists. 
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C++ Speedup Techniques: Some of the general ways to speed up C++ programs 
at the design structure or algorithmic level include: 

• Faster data structures (e.g., hash tables). 

• Faster algorithms (e.g., fix linear search to something faster like, you know, 
hashing again). 

• Parallelize via multi-threading, multi-process, multi-core, multi-GPU, 
multi-something. 

• Vectorization (parallelize your important loops) 

• Precompute expensive functions into a lookup table at compile-time (e.g., 
activation functions). 

• Cache any complex calculations to trade extra space for time savings (e.g., 
KV caching). 

• Change floating-point to integer operations (quantization, anyone?) 

• Replace recursion with iteration. Subtract ten bonus points if you need to 
do this. 

Some of the high-level C++ coding optimizations include: 

• Flatten function call hierarchies (stop wrapping everything so much, and 
inline the small functions at the bottom). 

• Optimize loops, especially nested loops (e.g., move loop-invariant code 
out, loop unrolling, vectorization, etc.) 

• Templates are effectively a compile-time optimization that improves speed 
at the cost of code space. 

• Reduce memory allocation (use less memory overall or replace memory 
allocation with temporary stack buffers). 

• Operator strength reduction (e.g., replace “*” with “+”, a pipe dream of all 
AI engineers). 

• Declare variables as close as possible to where they are used. This avoids 
instantiating objects that aren’t needed on some paths. 

• Use pointer arithmetic, especially for loops over arrays. 

• Bitwise operations are fast, but the basic C++ integer operations are also 
fast too, nowadays. Benchmark, don’t assume. 

• Use short-circuiting of the && and || operators, and also the 
ternary ?: operator, to avoid expensive function calls. 
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And finally, some things you might forget (and some that are forgettable): 

• Benchmark any important changes (e.g., operator strength reductions). 

• Turn up your C++ optimizer. There are higher settings you could try. 

• Add compile-time optimization hints (e.g., constexpr and restrict). 

• Overclock your PC (like a gamer). 

• Sell your car to buy a better GPU. 

• Put every function in a header file and make them all inline. 

• Reorder your case labels. Surely it helps. 

• Change i++ to ++i in everyone else’s code. 

C++ Class Slugs 

The C++ class features are designed to add encapsulation and modularity, while 
retaining speed, but there’s still plenty of ways that slugs can crawl into your classes. 
C++ class optimizations include: 

• Ensure small member functions are inline, especially those that do “get” 
and “set”. 

• Add inline to other friend or non-class functions (esp. if small or 
commonly used). 

• Pass objects to functions using “const&” (pass-by-reference), rather than 
pass-by-value. 

• Watch out for temporary objects. These can occur in simple assignments 
or function call expressions or in weird ways like accidentally making your 
overloaded assignment operator have the wrong type. 

• Use reference variables instead of copying objects into temporary variables. 

• Take care when templating using C++ class objects (e.g., when using 
the std::vector class for a vector of your class objects). Lots of hidden 
calls to constructors and destructors may arise in resizing. 

• Use the initializer list in the constructor for initializing data members. 

• Use friend functions for faster accesses to internal object data. 

• Block accidental calls to the copy constructor or class assignment operator 
(i.e., if you aren’t defining them, make a dummy version that is “private” 
with a “void” function body). 

• Avoid returning objects if you can. Return a reference if it’s safe to do so. 

• Take care with “wrapper” classes like “smart pointers”, “smart integers” 
or “smart buffers”. Usually, they’re safer but slower. How smart is that? 
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Bypass interfaces with friend functions 

Using friend functions may be faster because they can bypass class getter and 
setter member functions. If a class declaration has a good deal of private data, it 
is common C++ style to declare an interface of public member functions to access 
private data. Although the class interface can be quite efficient if member functions 
are declared as inline, the need to call a function to access a data value can still 
make it inefficient in some cases.  

The use of friend functions and friend classes can be efficient because this 
bypasses the class interface. For example, a member function to set a data member 
may perform some range checking on the value, but if we can be sure that a 
particular function will not use incorrect data, a friend function can be used to 
bypass this checking. 

friend functions (or entire friend classes) should not be considered unless the 
function needs very fast access to data members, and the member functions to 
access the data perform other computations. Note that a member function, with its 
special privileges, also bypasses the class interface (because it is part of it), 
and friend functions should not be used where member functions would be 
more appropriate. Programming style is the consideration here, as they would both 
have similar efficiency. 

A good example of friend function efficiency occurs when an operator function 
operates on two different classes, such as when we need an operator that multiplies 
a Matrix object by a Vector object to yield a new Vector. Assume that both of 
the classes have basic member functions to access individual elements of 
the Vector or Matrix. Consider the declaration of the multiply function as 
neither a class member nor a friend function, as in: 

    const int N = 10; // Number elements in vector/matrix 

    class Vector { 

        double data[N]; 

    public: 

        double get_element(int i) const { return data[i]; } 

        void set_element(int i, double value)  

                         { data[i] = value; } 

    }; 

 

    class Matrix { 

         double data[N][N]; 

    public: 

         double get_element(int i, int j) const  

             { return data[i][i]; } 

    }; 
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    Vector operator * (const Matrix& m, const Vector& v) 

    { 

        Vector temp; 

        // multiply matrix by vector 

        for (int i = 0; i < N; i++) { // for each row 

            double sum = 0.0; // sum of N multiplications 

            for (int j = 0; j < N; j++) { 

                sum += m.get_element(i, j) * v.get_element(j); 

            } 

            temp.set_element(i, sum); // store new element 

        } 

        return temp; // return new vector 

    } 

This will be horribly inefficient because the operator*() function must go 
through both class interfaces to access elements. Although it isn’t necessarily any 
less efficient here, if range checking of the array index i were present in the 
member functions to set or access the elements, this would cause inefficiency. 

Note that if the Vector class overloaded the [] operator instead of using 
a get_element member function, this would make no difference to efficiency—
notational convenience is gained but the operator[] function has the same cost 
as any other function. 

One alternative to consider is to make the operator* function a member in 
the Vector class, but this will still mean using the interface for the Matrix class. 
A more efficient solution is to make the operator* function a friend for 
both Matrix and Vector classes, thus allowing it direct access to their individual 
data elements, bypassing any range checking on array indices. The more efficient 
version, using a friend function, is: 

    const int N = 10; // Number of elements in vector/matrix 

    class Matrix; 

    class Vector { 

      double data[N]; 

    public: 

      friend Vector operator*(const Matrix& m, const Vector& v); 

    }; 

 

    class Matrix { 

      double data[N][N]; 

    public: 

      friend Vector operator*(const Matrix& m, const Vector& v); 

    }; 
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    Vector operator * (const Matrix& m, const Vector& v) 

    { 

        Vector temp; 

        // multiply matrix by vector 

        for (int i = 0; i < N; i++) { // for each row 

            double sum = 0.0; // sum of N multiplications 

            for (int j = 0; j < N; j++) { 

                sum += m.data[i][j] * v.data[j]; // access data  

            } 

            temp.data[i] = sum; // store new vector element 

        } 

        return temp; // return new vector 

    } 

The disadvantage of using friend functions is the same as their advantage: they 
pierce class encapsulation. Because a friend function directly makes use of 
hidden private data members, and any change to the class may require a change to 
the definition of the friend function, whereas in the first version of 
the operator* function the use of the “get_element” member functions of 
both Vector and Matrix meant that it would need no changes, provided the 
“get_element” functions were correctly changed within the class. 

Avoid Virtual Functions 

Object-oriented programming purists will hate me for this section. 
C++ virtual functions are a wonderful incarnation of OOP and they can be 
beautiful and elegant. But you need to avoid them sometimes if speed is your goal. 

They’re also very fast function calls, even though done dynamically. 
Although virtual function calls seem like they’re complicated and possibly slow, 
they’re actually very carefully designed to be very fast to call in C++ class 
hierarchies. There’s lots of painstaking work for compiler designers to get them to 
compile correctly, but their runtime efficiency is great for programmers. The 
implementation is effectively a small lookup table with function pointers. It’s a 
couple more assembler statements before the function call, and the overhead of 
calling a function will dwarf that cost. 

So, why do I say to review your use of virtual functions? Because they’re an 
optimizer blocker. Since they’re a dynamic runtime function call, there’s much less 
opportunity for the C++ compile-time optimizations to remove these calls. Indeed, 
the compiler cannot always determine what function is being called and you can 
lose these speedups: 

• inline functions 

• constexpr function evaluation 
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Hence, I say you have to choose carefully in the use of virtual functions. Avoid 
them for speed-critical functions, and don’t use them only for good OOP style 
when you don’t really need them. But also, don’t be afraid of using them in other 
instances because they’re only marginally slower than a non-inlined function call. 
Kudos to the C++ language designers for that! 

Avoid unnecessary virtual function calls 

The use of virtual functions, when they are not needed, is obviously 
inefficient. virtual functions are needed only when dealing with pointers or 
references to objects of unknown type. If the program never uses pointers or 
references to objects, or if it does not have any derived classes, no function needs 
to be virtual and the use of virtual wastes space. In addition, 
because virtual functions relate only to the use of derived classes, declaring any 
functions as virtual in a class that has no derived classes is also unnecessarily 
inefficient. 

One common situation where virtual may appear necessary, but need not be, 
occurs with redefining a member function in a derived class. This does not 
necessarily mean that the function must be defined as virtual in the base class 
(nor in the derived class — the virtual keyword is never needed in the derived 
class). Of course, if the program starts using pointers or references to these classes, 
the functions may need to be virtual, in which case it may be better style to 
declare the member function as virtual. 

A call to a virtual function need not always be a “real” virtual call. For 
example, passing an object by reference (either as a reference or as a pointer type) 
can occur when changing functions to pass-by-reference for efficiency 
improvement.  

Any calls to virtual functions inside that (not necessarily virtual) function 
will be such that the compiler cannot know that an ordinary function call to the 
member function would suffice. It does not perform any global analysis to 
determine that all arguments to the function are base objects, and not derived 
objects.  

For example, in the following code, it isn’t clear that the call to the 
(virtual) print function could be replaced by an ordinary call: 

    void print_base_object( Base & object) 

    { 

        object.print(); 

    } 
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The overhead of virtual function calls can be removed whenever the programmer 
can be sure that only one type of pointer/reference to an object is being used. In 
particular, whenever a programmer can be sure that a pointer/reference to a base 
class object points to a particular object, the qualified member function name can 
be used. For example, the virtual call uses: 

    p->print(); 

And the more efficient code that avoids a virtual function call is: 

    p->Base::print(); 

An example of extra information making this change possible occurs when a 
program uses a number of different (homogeneous) linked lists, with each linked 
list containing the same type of object (one with base objects, one with derived 
objects). When implementing a print_list function to print out a linked list, 
you can write it generally to call a virtual-declared print_object function: 

    void LinkedList::print_list() 

    { 

        for (Base *temp = head; temp != NULL;  

                                temp = temp->next()) 

            temp->print_object(); 

    } 

This means that each call to print_object has the run-time overhead of 
a virtual function call. A more efficient alternative is to make use of the 
knowledge that each list must contain the same type of object, and have two 
different print_list functions (i.e., use a virtual function to do the dirty 
work of printing the objects). 

    void Base::print_list_hidden() 

    { 

        for (Base *temp = this; temp != NULL;  

                                temp = temp->next()) 

        temp->Base::print_object(); 

    } 

 

    void Derived::print_list_hidden() 

    { 

        for (Derived *temp = this; temp != NULL; 

        temp = (Derived*)temp->next()) 

        temp->Derived::print_object(); 

    } 
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    void LinkedList::print_list() 

    { 

        if (head != NULL) 

            head->print_list_hidden(); // call virtual fn 

    } 

With this approach, all of the lower-level calls to print_object can be bound at 
compile-time and the only virtual call is the call to print_list_hidden at 
the very top. Hence, by using our knowledge about the linked lists, we have reduced 
the number of run-time virtual function calls. 

Specialize inherited member functions 

In an inheritance hierarchy, the derived class is a specialized version of the base 
class. This means that member functions inherited from the base class can often be 
rewritten more efficiently to make use of the known special features of the derived 
class objects. 

Example: Triangular Matrix Algebra. As an example, consider a class 
“UTMatrix” (upper triangular matrix) which is derived from class “Matrix” and 
represents matrices where all elements below the main diagonal are zero. 

The general matrix “add” function of the Matrix class is inherited by 
the UTMatrix class, and it will work correctly. However, this inherited function is 
inefficient and it is more efficient to add a new member function to 
the UTMatrix class to add two upper triangular matrices avoiding all additions 
involving elements below the diagonal (because they are known to be zero). 

In fact, it is also more efficient to write special functions to add ordinary matrices 
to upper triangular matrices. The computation of the determinant of a triangular 
matrix is also more efficient than that for a general square matrix, so this member 
function should also be rewritten in the UTMatrix class. 

Example: Complex Numbers. As another example, consider a class 
“Imaginary” (imaginary numbers) derived from another class “Complex”. For 
all operations involving Imaginary objects, it is certain that the real part of the 
complex number is zero. Hence, it is more efficient to rewrite all inherited 
operations that use the real part of a Complex object, such as: addition, etc. 

The main disadvantage of specializing member functions is that the code reuse 
advantage of inheritance is negated; more programmer time must be spent on 
recoding the specialized member functions. Other disadvantages are the increased 
probability of error, more special cases to test, and increased executable code size. 
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Assignment Operator Return Type 

The return type of the overloaded assignment operator should usually be a 
reference type or void. A common mistake is to make it return a class object. 
Consider the following class declaration: 

    class Integer { 

        private: int val; 

        public: 

        Integer operator = (const Integer &x); 

        // ... 

    }; 

 

    Integer Integer::operator = (const Integer &x) 

    { 

        val = x.val; // copy data 

        return *this; // return left operand 

    } 

This declaration of the assignment operator to return an object permits expressions 
using the result of assignment, such as: 

    Integer x, y, z; 

    x = x + (y = z); // embedded assignment 

    x = y = z; // multiple assignment 

However, it needlessly calls the constructor and destructor for a temporary object, 
leading to inefficiency, and occasionally to error. The correct declaration of the 
assignment operator is to return a const reference to Integer. This simply 
requires an & in the return type declaration, as follows: 

    const Integer& Integer::operator = (const Integer &x) 

    { 

        // ... same as above 

    } 

Note that const is required because the use of a non-const reference return type 
is slightly undesirable because it allows the very strange (and probably incorrect) 
multiple assignment: 

    (x = y) = z; 

Although the failure to declare the return type as a reference above was a slug, rather 
than a bug, it can be more dangerous.  
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For a MyString class with dynamic allocation, using a return type 
of MyString instead of MyString& will cause a temporary object to be created 
at the return statement, using the copy constructor with “*this” as the 
argument. If the copy constructor is defined correctly, this is often just an instance 
of inefficiency, but it may also lead to fatal errors related to temporary objects. 
When the copy constructor isn’t defined correctly, the programmer has an error 
with an increased level of complexity caused by temporary objects. 

Return Type Void: Note that it may be far better simply to declare the return type 
of the assignment operator as void, rather than a reference type. Although this 
prohibits embedded assignments in expressions and also multiple assignments, 
these are poor style anyway and should probably be discouraged. Using return 
type void is also slightly more efficient because no value need be returned. 
However, returning the reference type is the more common C++ idiom. 

Singleton Classes 

In a one-instance class there will only ever be one object defined from it. There are 
called “singletons” in the “design patterns” parlance. In this situation the class can 
be defined very efficiently by making use of compile-time initialization with data 
members declared as “static” members. 

An example is a hash table implementation of a symbol table (e.g., in a compiler 
keyword table or an AI vocabulary table used by the tokenizer), where only one 
symbol table will ever be used. The crucial fragment from this code is: 

    class SymbolTable { 

      private: 

        Node * table[TABLE_SIZE]; // Hash table array of ptrs 

      public: 

        SymbolTable(); // constructor 

    }; 

 

    //--------------------------------------------------- 

    // Constructor - initialize the hash table to empty 

    //--------------------------------------------------- 

    SymbolTable::SymbolTable() 

    { 

        for (int i = 0; i < TABLE_SIZE; i++) // all ptrs NULL 

            table[i] = NULL; 

    } 

If there will only be one hash table, the constructor is needlessly inefficient. A more 
efficient version declares the hash table as a static data member and the implicit 
initialization to zero will set all the pointers to NULL at compile-time.  
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The efficient code for a one-instance hash table is: 

    class SymbolTable { // ONE INSTANCE ONLY 

      private: 

        static Node *table[TABLE_SIZE]; // Compile-time 

      public: 

        SymbolTable() { } // constructor does nothing 

    }; 

Temporary Objects and Destruction 

Temporary objects are created automatically by the compiler in a number of 
situations. This is a similar idea to a compiler using temporaries for intermediate 
results of a computation. However, a temporary with class type will have its 
constructor and destructor activated, so temporary objects can be expensive. 

For example, try this class to demonstrate how a temporary object is defined for 
intermediate expression results, particularly that returned by the + operator: 

    class Integer { 

    private: int val; 

    public: 

        Integer() { val = 0; cout << "Constructor\n"; } 

        ~Integer() { cout << "Destructor\n"; } 

        Integer(const Integer &x) 

        {  

            val = x.val; 

            cout << "Copy Constructor\n"; 

        } 

        void operator=(int x) { val = x; } 

        void operator=(const Integer &x) { val = x.val; } 

        friend Integer operator+(Integer &x, Integer &y); 

    }; 

 

    Integer operator+(Integer &x, Integer &y) 

    { 

        Integer temp; // user-defined temporary 

        temp.val = x.val + y.val; 

        return temp; // creates compiler temporary 

    } 

 

    int main() 

    { 

        Integer i, j, k; 

        k = i + j; 

    } 
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There are 4 calls to the ordinary constructor corresponding to i, j, k, and temp; 
there is only a single call to the class copy constructor that occurs when 
the return statement creates a temporary object for the object returned from 
operator +. This temporary object is the result of i+j and is then assigned to k. 

In this case there are poor performance and no errors related to temporary objects 
and in most cases, temporary objects are transparent to the programmer for a 
correctly defined class (i.e., having both assignment operator and copy constructor). 
However, if the programmer unwittingly stores a reference or pointer to members 
of a temporary object, there may be errors in a later use of the reference or pointer.  

The problem is that temporary objects can be destroyed by the compiler as soon as 
they have been used in the computation, and so the reference or pointer is no longer 
valid. However, since the timing of the destruction of temporaries is undefined, 
some compilers will not exhibit an error for such code because they leave the 
destruction of temporaries till late; it depends on how aggressively a particular 
compiler performs its internal code optimization. 

Overloaded Postfix Increment Operator 

The postfix increment operator (x++) is a big slimy slug. I’m not talking about 
your for loop with “i++” versus “++i” for an integer, which is the same on any 
compiler since about the 1990s, despite the endless online arguments about it. I’m 
talking about overloaded increment and decrement operators for classes. 

In C++ you can declare separate prefix and postfix increment overloaded operators 
for a class, by putting an extra dummy “int” parameter in the postfix version. You 
can also leave out a postfix version, and the prefix version will be called for both 
usages. The default call to prefix versions is not a slug, but a potential bug if you 
copy-paste code or use postfix ++ in template code. Also, returning the current 
object for the prefix increment operator is only a minor slug, because you’re 
returning a reference to the current object (and a reference is really just a pointer). 

Postfix operations are much worse. They are slower than airport queues at 
Thanksgiving. The semantics of the postfix increment operator (x++) in the C++ 
language are effectively: 

1. Create a temporary copy of your object. 

2. Increment the current object. 

3. Return the temporary object. 
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If you actually do this big shemozzle for a class object, you’ve got a whole lot of 
processing happening on a temporary object that’s probably not even used. Maybe 
the optimizer will cut a lot of it as dead code, or maybe not. With the horrors of 
that echoing in your mind, here’s my first suggestion: 

Don’t even declare postfix overloaded operators for your class. 

Don’t overload the postfix increment operator. In fact, you can stop it being used 
by declaring a dummy version that is “private” (stops external usage) with a 
“void” function body (stops internal usages). 

    private: 

        // Postfix denied! 

        void operator++(MyClass &x, int) void;    

        void operator--(MyClass &x, int) void; 

Void Return Type: Note that attempts to call a postfix ++ operator on a class type 
may occur in template instantiation with your type. If it’s your template, change the 
template code to use prefix operators. If you really must define an overloaded 
postfix increment or decrement operator, then here’s my second suggestion: 

Make the return type “void” 

Hence, a basic usage of “x++” will compile and work correctly. Not only will it be 
efficient to not return anything, but the compiler will also ensure that nothing more 
fancy will run. A compilation error will block any use of postfix ++ that relies on 
the operator returning the old object. In other words, this will be fine: 

    x++; 

But this will get a compiler error alerting you to a problem: 

    y = x++;   // Error 

Standard Vector Object Resizing 

The standard vector class is usually very efficient for basic data types, but you 
need to take care if you instantiate it with a class type. The risk is that you’ll have 
hidden calls to this class type’s constructors and destructors, potentially for every 
element of the vector, under various circumstances. 
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This slug is a type of “hidden copy constructor call” problem. If you don’t manage 
the size of the standard C++ vector class objects in the initialization or via the 
“reserve” method, there can be a lot of hidden resizing happening behind the 
scenes whenever you are adding elements to the vector. This will at least be doing 
bitwise copies of the elements of each vector. But it’s even worse if the vector 
contains complex objects with a defined copy constructor. When it’s resizing 
the vector, it will call the copy constructor for each and every object that is an 
element of the vector because it needs to move them all. 

Even for basic data types there can be some cost to copying the data when resizing. 
You can take control of this with the “reserve” function, so that 
the vector object doesn’t need to keep resizing itself if you’re adding to it. 

Skipping Destructor Cleanup 

It’s really good OOP coding style for your destructor to carefully clean up every 
resource your object needed, and you know, beautiful coding idioms are just so very 
important. I certainly wouldn’t want to be the person to tell you to do some ugly 
hack, even if it made everything a whole boatload faster. Umm, really, I wouldn’t 
want to, but if you promise not to tell anyone you heard it from me... 

Typically, destructor cleanup means calling “delete” on allocated memory used 
by the data members, and for complex objects, it may also mean closing files. And 
I often find that the cost of the destructor starts becoming significant in its own 
right. And one destructor call can trigger lots more, like roaches, only without the 
social skills. If you call “delete” on any member objects or worse, arrays-of-
objects, then those destructors get called, and this triggers a whole blam of code 
that cascades down the object hierarchy. 

Here’s a thought: don’t cleanup! 

This is an optimization worth considering in some cases: 

• Batch jobs 

• Re-launching server daemons 

• Program is shutting down anyway 

If your program is a run-once batch job, and it’s not going to be running again with 
a new request, or even if it’s an AI inference server process that handles 1,000 user 
queries, after which another copy will launch in its place, then you can make like a 
teenager, and don’t cleanup. Thumb your nose at Valgrind and comment out all 
those delete lines in your destructors. 
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Let the memory leak! 

Program exit is a special case that you can detect. If your program is exiting 
“cleanly” then it does destructor calls to all of the global objects, and so on. And 
you usually know in the code when the program is shutting down, whether from a 
user choice, a timeout or limit exceeded, or something internal like an assertion 
failure. One idea is to use a global Boolean flag that says “I’m shutting down” and 
then check it inside all of the main destructors: 

   MyClass::~MyClass() 

   { 

        if (g_aussie_im_shutting_down) return;  // Skip! 

        ... 

        // Lots of stylistically beautiful code 

   } 

Is it safe? What happens if you just skip all the cleanup? Well, nothing bad in many 
cases. The operating system cleans up the allocated memory as part of 
reclaiming all of the memory. Files are a bit more of a complicated story. Standard 
C++ shutdown should also properly close any files opened for reading, although 
you might possibly lose some buffered output written to a log file, so maybe you 
should still flush buffers or close those files. 

This idea of skipping destructors isn’t always workable. It’s not always clear that 
ending the process will properly save buffered output in closing files. As another 
more complex example, if there’s an abnormal disconnect from a database session 
or a remote network connection hangup (e.g., socket session not ended properly), 
there might be some other consequences, like error messages in the logs locally or 
for the remote peer. 

Initializer lists for member objects 

When a class declaration contains a class object as one of its members it is important 
to use the correct method of initialization to retain efficiency. Consider the 
declaration of a class B containing a member object from class A: 

    class A { 

      private: 

        int val; 

      public: 

        A() { val = 0; } 

        A(int x) { val = x; } 

        void operator = (int i) { val = i; } 

    }; 
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    class B { 

      private: 

        A a; // member is itself an object 

      public: 

        B() { a = 1; } // INEFFICIENT 

    }; 

Declaring an object of type B will cause the default constructor for the member 
object of type A to be invoked immediately before the default constructor for B. 
Then the = operator for class A is used to set the member object, a. Hence, the 
constructor for B involves a call to A’s default constructor and a call to the 
assignment operator. The call to A’s default constructor is redundant and should be 
avoided. Fortunately, C++ provides a convenient syntax for passing arguments to 
constructors of member objects. The default constructor for B should be recoded 
to use the initializer list: 

    B() : a(1) { } // EFFICIENT 

This initialization syntax causes the constant 1 to be passed to the constructor for 
the member object, a (the constructor accepting the int parameter is called, 
instead of the default constructor). Thus, instead of calling the default constructor 
and the assignment operator for A, only the int constructor for A is called. 

This initialization method is efficient whenever calling the default constructor for a 
member object is not appropriate, for instance, when the member object is 
initialized by a call to the assignment operator within the main object’s constructor 
(as above, where B’s constructor assigned to its data member of type A). This form 
of initialization can be used for any type of data member (i.e., not only class objects), 
although it will be neither more nor less efficient than assignment for built-in types. 
The special initialization syntax should be used wherever it is applicable, since it can 
never be less efficient than assignment to the data members within the constructor, 
and will often be more efficient. 

Initializer lists for base objects 

Base objects. Similar efficiency considerations apply to constructors in derived 
classes, since the data member(s) in the base class act like an object member. The 
constructor for the base class is always called when a derived class object is 
constructed. When the default constructor for the base class is of no use to a 
derived class object, it is more efficient to pass arguments directly to a non-default 
base class constructor, using the special initialization syntax. The same syntax 
applies as for data member initialization, except that the type name of the base class 
is used instead of the name of a data member.  
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A contrived example of this form of initialization is: 

    class Derived : public Base { 

      public: 

        Derived() : Base(0) { } // Call Base(int) constr 

    }; 

Avoid temporary objects 

In the same way that temporary integer variables are used to compute an integer 
expression, so too are temporary objects used in non-trivial expressions involving 
class objects. For example, consider this code where the Complex class has defined 
the + and = operators: 

    Complex c1,c2,c3; 

    c1 = c2 + c3; 

This is likely to create a temporary Complex object as the result of the addition, and 
this temporary object is then passed as an operand to the = operator. In other 
words, the expression is actually evaluated as: 

    operator=( c1, operator+(c2, c3)); 

A temporary object must be created to store the “+” sub-expression computed for 
the second argument, and then passed to the “=” operator. Whether the operands 
to operator= are passed by reference or by value has no effect on whether a 
temporary is created in this situation (it will only affect the creation of new objects 
inside the operator= function). 

One (rather inelegant) method of avoiding this creation of temporaries is to create 
a specialized function to handle it: 

    void AssignThree( 

         Complex &c1, Complex &c2, Complex & c3 

    ); 

    ... 

    AssignThree(c1,c2,c3); // c1 = c2 + c3; 

The function should probably be a friend function to allow efficient access to the 
data members of the three Complex objects. 

The problems with this solution are its very poor style (because the neatness of the 
use of overloaded operators is lost), and also its non-general character.  
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More complicated expressions will still generate temporaries, unless more special 
functions are added as friend functions, leading to even worse style. This “cure” 
is perhaps worse than the disease. 

Avoid temporaries via extra member functions 

There are situations where the removal of temporaries does not lead to poor style. 
Consider the following definition of a minimal Complex class: 

    class complex { 

      private: 

        double re; // real part 

        double im; // imaginary part 

      public: 

        // Constructors 

        complex() { re = 0.0; im = 0.0; } 

        complex(double r) { re = r; im = 0.0; } 

        complex(double r, double i) { re = r; im = i; } 

        // Copy constructor 

        complex(complex &c) { re = c.re; im = c.im; } 

        // Overloaded assignment operator 

        void operator = (complex & d) { re = d.re; im = d.im; } 

        // Overloaded + operator 

        friend complex operator + (complex &c1, complex &c2); 

    }; 

 

    inline complex operator + (complex &c1, complex &c2) 

    { 

        return complex(c1.re + c2.re, c1.im + c2.im); 

    } 

Consider this class definition when used in the following code sequence: 

    complex c1, c2; 

    c1 = 2.0; 

    c2 = c1 + 3.0; 

The effect is identical to: 

    c1 = complex(2.0); // invoke "double" constructor for 2.0 

    c2 = c1 + complex(3.0); // "double" constructor for 3.0 

The C++ compiler automatically creates two temporary objects from 
the double constants, and calls the double constructor to do so. The inefficiency 
of the creation of a temporary object and the call to the constructor can be avoided 
by adding a few more functions to the class declaration: 
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    void operator = (double d) { re = d; im = 0.0; } 

    friend complex operator + (double d, complex &c2); 

    friend complex operator + (complex &c1, double d); 

If these functions are present, then the double constants are passed directly to 
the double parameters of these functions. No temporary object is created, and 
hence the constructor is not called. Note that two symmetric versions 
of operator+ are required because the C++ compiler cannot assume that the 
commutativity of + holds for user-defined class objects. 

By making the “interface” efficient for mixing complex and double variables, the 
creation of temporaries has been reduced. This can be generalized: it is better to 
provide member or friend functions to class X for a specific parameter type Y, 
than to provide only a constructor to create new X’s from Y’s. 

Declare objects close to use 

The C++ language allows variable declarations to appear almost anywhere within a 
program. Although the placement of variable declarations may seem unrelated to 
efficiency, it can have some effect when objects with non-trivial constructors are 
declared. For efficiency reasons, an object must be declared as close to its first use 
as possible. In particular, the C style of declaring all variables at the top of a function 
is often inefficient. Consider the C++ code below: 

    void dummy(...) 

    { 

        complex c; // create object 

        if (... ) { 

            .... // use c 

        } 

    } 

 

The complex object is not used if the condition in the if statement is false — the 
constructor and destructor for the unused object are called needlessly. 

Declare Objects with Full Initialization 

Another consideration is that objects should not be declared until there is enough 
information to construct them fully. For example, given a user-defined class 
“complex”, consider the following code: 

    complex c; // construct c 

    // .... 

    c = 1.0; // initialize c 
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This is less efficient than calling the correct constructor directly by using: 

    complex c(1.0); // construct and initialize c 

The first code sequence involves a call to the default constructor and the 
overloaded operator=, whereas the second declaration calls only the (double) 
constructor for the complex class. 

Unfortunately, there are practical limits to the extent to which objects can be 
declared near their first use. If the first use of an object is inside a compound 
statement, and the object must also be used outside the compound statement, the 
scope resolution rules prevent the declaration from being placed inside the 
compound statement. For example, consider the code below: 

    double d; 

    complex c; 

    while(....) { 

        cin >> d; // get double value from user 

        c=d; // set complex number 

    } 

    cout << c; // print the complex number 

In this sequence, it would be more efficient to declare “c” inside the loop block 
using the direct call to a double constructor: 

    complex c(d); 

However, this would prevent the use of c outside the scope of the braces. This 
limitation is an unfortunate consequence of the programming language design 
choice to make braces both the method of grouping statements and the scoping 
mechanism in C++ (but there are many more important advantages supporting this 
decision). Unfortunately, it is not even possible to remove the braces in the above 
example, using the comma operator as by: 

    while(...) 

        cin >> d, complex c(d); // Compilation error 

C++ syntax prevents a declaration from being an operand of the comma operator. 

Nothing Constructors. What we really want is a way to declare a class type 
variable, but not run its constructor. I’m not aware of a good way to do this. One 
way would be to use pointers and dynamically allocated “complex” objects, which 
is successful and standardized, but this adds extra memory management overhead. 
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Here’s a thought. Maybe something like this works? Declare a dummy constructor 
with a dummy parameter type: 

    class Banana { }; 

    complex(Banana b) {  } // nothing! 

Then your call to the dummy constructor is hopefully optimized to nothing: 

    Banana b; 

    complex c(b);  // Nothing! 

Data Member Optimizations 

These optimizations apply to C++ objects or structures. There are various ways to 
speed up the data accesses and writes to a data member in an object. 

Avoid bit-fields. Bit-fields are a special C++ feature designed to reduce space in 
an object or structure. 

    struct node { 

        unsigned int visited :1; // bit-field  

    }; 

Avoid bit-fields if you want runtime speedup. They are great at reducing memory 
size, but often at the cost of extra run-time overhead on any accesses to these fields. 
Hence, for improved efficiency, at the cost of space wastage, remove the “:1” 
qualification and change to a small data type such as bool, char, or unsigned 
char. 

Memory alignment: If there are mixed size data members, or there are some with 
“alignas” alignment settings, then memory alignment issues can needlessly create 
an oversize object. This is more of a problem in terms of unnecessary space usage, 
but adds inefficiencies in the need to initialize or copy the extra padding bytes for 
large arrays of objects. The general rules for minimizing size are to: (a) order 
members from large to small, and (b) group like size data types together. 

Most used data member first. The machine code for an access to a structure or 
object’s data fields usually involve a base address of the object, to which is added 
an offset that is specific to each field. References to the first field of a structure can 
often be more efficient because there is no need to add an offset (i.e., the offset is 
zero). Hence, the most used class data member or structure field should be placed 
first in the declarations. 
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Order data members by usage. It’s not just the first data member whose order 
matters. Memory access issues such as data locality, predictive caching and memory 
access pipelining mean that all of the most-used data members should be close 
together in an object. In very large objects, there are some platforms where smaller 
offsets are more quickly calculated, such as data members with less than 128 or 256 
as their offset. Hence, a simple optimization is to order the data member 
declarations according to their usage. 

Function Slugs 

Functions are an important building block of your code. Some ways to get the slugs 
out of functions include: 

• Declare small functions inline. 

• Avoid recursion. 

• Pass objects by reference. 

• Avoid function pointers. 

• Specialize functions with default arguments. 

Avoid Function Pointers 

C++ allows a data type called a “function pointer” or a “pointer to a function” as 
part of its standard language. These are carefully type controlled, so they are 
reasonably efficient. However, they are not any faster than regular function calls, 
just because they’re a fancy pointer construct, and there’s a simple reason that 
they’re not super-efficient: they’re function calls! 

A function pointer is a call to a function, so it has the whole sequence to implement. 
It’s not much worse than a standard function call, but there’s another problem. 
Function pointers make it difficult for the C++ compiler to get rid of the function 
call. The use of a function pointer will obscure much of the normal compile-time 
optimization logic. Hence, function pointers can be less efficient for: 

• inline functions 

• constexpr functions 

• Intrinsic functions 

In summary, they’re a neat feature of C++, but not an efficiency gain. Use function 
pointers if they are convenient, but not as a speedup. 
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Change recursion to iteration 

Recursion is an elegant method of problem solution, but often incurs unnecessary 
function call overhead. Where possible, recursion should be replaced with an 
iterative algorithm. For example, the famous example of a recursive “factorial” 
function would always be coded in a loop by professional programmers. 

Fibonacci numbers. With a little insight, many recursive algorithms can be coded 
without recursion. For example, the Fibonacci number sequence (1,1,2,3,5,8,13,...) 
is defined by having the next number as the sum of the previous two numbers, with 
the following recursive rules: 

    Fib(0) = 1 

    Fib(1) = 1 

    Fib(n) = Fib(n−1) + Fib(n−2) 

This has the obvious and very elegant recursive implementation: 

    int fibonacci(int n) 

    { 

        if (n <= 1 ) 

            return 1; 

        else 

            return fibonacci(n - 1) + fibonacci(n - 2); 

    } 

However, there is no need to use recursion here, and a short loop is adequate. A 
non-recursive computation of the Fibonacci numbers is shown below: 

    int fibonacci(int n) 

    { 

        int small = 1, large = 1;  // F0 = F1 = 1 

        while (n > 1) { 

            int temp = small + large; // Fn = Fn-1 + Fn-2 

            small = large; 

            large = temp; 

            n--; 

        } 

        return large; 

    } 

Binary Trees. There are many examples of common algorithms that are 
unnecessarily coded using recursion. Almost all linked list algorithms can be coded 
without recursion, as can the most common binary search tree operations: search, 
insertion and deletion.  
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For example, the recursive implementation of tree insertion is: 

    void insert(Tree *root, Tree new_node) 

    { 

        if (*root == NULL) // Found bottom of tree  

            *root = new_node; // insert here  

        else { 

            if (new_node->data <= (*root)->data) 

                insert(&(*root)->left, new_node); 

            else 

                insert(&(*root)->right, new_node); 

        } 

    } 

The non-recursive version of binary tree insertion is given below. It is somewhat 
less elegant, uses a few more variables, but should be more efficient. 

    void insert(Tree *root, Tree new_node) 

    { 

        Tree temp = *root; 

        if (temp == NULL) // empty tree special case 

            *root = new_node; 

        else { 

            for (;;) { 

                if (new_node->data <= temp->data) { // go left? 

                    if (temp->left == NULL) { // leaf? 

                        temp->left = new_node; // insert it 

                        return; // finished 

                    } 

                    else 

                        temp = temp->left; // go left 

                } 

                else { // going right 

                    if (temp->right == NULL) { // leaf? 

                        temp->right = new_node; // insert it 

                        return; // finished 

                    } 

                    else 

                        temp = temp->right; // go right 

                } 

            } 

        } 

    } 

I’m sorry, Professor! Your recursive code is short and beautifully elegant, but mine 
is longer, uglier, and faster! Maybe I shouldn’t tell my Professor that I’ve never 
coded a binary tree since finishing my degree? Hash tables are the name of the 
game. 
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Eliminating tail recursion 

Recursion is rarely a good solution, but some types of recursive algorithms are not 
easy to change to loops, because they would require a stack data structure to do so. 
If a stack is needed, there may be little gain in removing recursion fully — it depends 
on how efficiently recursion is implemented by the compiler on the builtin C++ 
function call stack, versus your skill in hand-coding a stack data structure. 

In these situations, a simpler optimization is still possible without a stack. Partial 
recursion elimination without the need for a stack is possible via the elimination of 
“tail recursion.” Tail recursion occurs when the last action of the recursive 
procedure is to call itself. 

A simple modification changes this last recursive call to become a loop back to the 
top of the current invocation. For example, consider the preorder traversal of a 
binary tree. The simplest recursive algorithm is: 

    void preorder(node_ptr root) 

    { 

        if (root != NULL) { 

            visit(root); 

            preorder(root->left); 

            preorder(root->right); // Tail recursion here 

        } 

    } 

Tail recursion can be eliminated by replacing the if statement with a while loop. 
The transformation effectively reduces recursion by half, as the second recursive 
call is eliminated. This reduction in recursion is achieved with virtually no extra 
overhead! 

    void preorder(node_ptr root) 

    { 

        while (root != NULL) { // while loop replaces if 

            visit(root); 

            preorder(root->left); 

            root = root->right; // Move to right subtree 

        } 

    } 
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Replacing recursion with a stack 

Some recursive algorithms cannot be easily replaced by iterative loop equivalents. 
For example, in the preorder binary tree traversal above, we were unable to remove 
both of the recursive calls. In these situations, recursion can be replaced with an 
algorithm using a stack data structure. 

All recursive algorithms can be replaced by a stack because recursive algorithms are 
actually using an implicit stack (the program stack of function calls). Whether use 
of a stack will be more efficient than a recursive algorithm depends on various 
factors. The choice of a stack over recursion is machine-dependent. In particular, it 
is quite likely that the program stack is supported by efficient low-level instructions 
and that (recursive) function calls are executed very efficiently. Can you do better? 

On the other hand, recursion requires that much information be stored on the stack 
(i.e., parameters, automatic local variables, machine registers), whereas an algorithm 
making use of an explicit stack will usually only need to store a few items, making 
it potentially faster than the function call stack. If the maximum size of the required 
stack is known beforehand, a stack can be quite efficiently implemented as an array, 
whereas a dynamic stack as a linked list will usually be more costly because of the 
cost of memory allocation. 

The following shows the preorder traversal with tail recursion elimination removing 
one recursive call and an explicit stack replacing the other. In this case, the explicit 
stack need only store pointers. 

    void preorder(node_ptr root) 

    { 

        stack_type S; 

        init_stack(S); // set to empty stack 

        while (root != NULL || !is_empty_stack(S)) { 

            if (root != NULL) { 

                visit(root); // visit a tree node 

                push(S, root->right); // save right subtree 

                root = root->left; // go to left subtree 

            } 

            else 

                root = pop(S); // get node from stack 

        } 

    } 

Collapsing recursive calls 

If you can’t be bothered changing a recursive algorithm to a loop or stack, here’s a 
smaller optimization to consider. By channeling the spirit of loop unrolling, we can 
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“collapse” one or more levels of recursion into sequential code. The method of 
“function call collapsing” can be applied to recursive functions in this limited sense. 
Obviously, it isn’t possible to collapse a recursive function call completely into 
inline code, but it is possible to collapse a few levels of recursive calls at a time, 
reducing the total number of recursive calls by a constant factor. 

Moving the recursive base case higher. The simplest method is to test the base 
case one level higher up. In the simple implementation of the preorder traversal , 
the recursive base case is “root==NULL”. If this occurs, the function call does 
nothing. One simple method of avoiding these unnecessary function calls is to test 
for the base case before the recursive call. The new function becomes: 

    void preorder(node_ptr root) 

    { 

        while (root != NULL) { 

            visit(root); 

            if (root->left != NULL) // Test moved up 

                preorder(root->left); 

            } 

            root = root->right; 

        } 

Collapsing multiple levels of recursion. By converting multiple levels of 
recursive calls into sequential code, the function does much more work each time, 
but makes recursive calls less frequently, thereby reducing function call overhead. 
For example, the preorder traversal can be rewritten so that the current node and 
its two children are handled by the function, and then recursive calls are made for 
any of the children’s children: 

    void preorder(node_ptr root) 

    { 

        if (root != NULL) { 

            visit(root); 

            if (root->left != NULL) { // do left child 

                visit(root->left); 

                preorder(root->left->left); 

                preorder(root->left->right); 

            } 

            if (root->right != NULL) { // do right child 

                visit(root->right); 

                preorder(root->right->left); 

                preorder(root->right->right); 

            } 

        } 

    } 
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But alas, we’ve reverted here to a fully recursive version again, just to show function 
call collapsing. The above method should also be combined with (a) tail recursion 
elimination, and (b) a stack data structure. This is left as an exercise for the reader 
(thankfully), and as a project scope estimate, I suggest two weeks! 

Use Parameters as local variables 

Parameters to functions can be used as if they were local variables. Because of C++ 
call-by-value parameter passing of all basic data types (not arrays), the modification 
of a parameter inside the function does not change the values of any variables not 
local to the function. This method saves on initialization time, and on stack space. 
In the example below, to zero an array, the size is counted down, rather than having 
a local variable counting up. 

    void zero_array(int arr[], int n) 

    { 

        while (n > 0) 

            arr[--n] = 0; 

    } 

This code also has the optimization of “looping down to zero”. Note that we have 
to be careful that this code doesn’t access arr[n], but does correctly 
clear arr[0]. I think it works correctly, but my brain is on fire trying to check it. 

Pass function parameters by reference 

Passing objects or large parameters by value is an inefficiency. The C++ language 
provides a very convenient method of achieving pass-by-reference, by simply 
using & in the parameter declaration. One method of improving efficiency is to pass 
objects to functions as reference parameters. 

Behind the scenes, pass-by-reference is like passing a single pointer as the 
parameter. This avoids not only the cost of copying a large object onto the stack, 
but also the cost of the copy constructor and destructor for the object within the 
function (i.e., the parameter is a separate object when passed by value). 

A function parameter can be changed to use pass-by-reference parameters only if it 
does not change the object. Fortunately, modifications to parameters can be 
detected simply by qualifying the parameter declaration with const, thus forcing 
the compiler to warn about any modifications to the object within the function. An 
example of the use of reference parameters in the definition of a Complex object 
is shown below: 
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    class Complex { 

        double r, i; 

      public: 

        Complex & operator += (const Complex & c); 

        // c is passed by reference for efficiency 

        // The return type is also a reference 

    }; 

 

    Complex & Complex::operator += (const Complex & c) 

    { 

        r += c.r; // add to both data fields 

        i += c.i; 

        return *this; // reference to updated object 

    } 

Const reference parameters. Passing the argument by reference improves 
efficiency by avoiding big objects. Note that the parameter is declared “const” as 
well as “&” indicating a reference. This “const&” pattern is the common C++ 
idiom for simulating a non-modified pass-by-value object send into a function as a 
faster reference type. 

Returning References. This code also has a second optimization: reference return 
types. Making the return value a reference is also efficient, because 
the return statement does not invoke the copy constructor. Note that a returned 
reference is necessary only if the user of the Complex class uses complicated 
expressions such as x+=y+=z. If such expressions are not required, efficiency can 
be improved by making the return type void. 

Objects Only. The use of references is best limited to class objects, and also to 
structures and unions. Arrays are already passed by reference in C++ and hence 
there is no need to change them. The use of references for scalar types 
(integers, float, double, and pointers) is unlikely to give much improvement, if 
any, and might even be slower for some. 

Pitfall: Temporary Objects. Another disadvantage of using reference parameters 
for scalar types like “int” is the inefficiency caused if a constant value is passed as 
an argument (i.e., a number not a variable). Paradoxically, passing a constant 
argument to a reference parameter is not an error in C++, but instead a new 
temporary object with this type is created automatically by the compiler and its 
address passed. 
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Implicit “this” object. Note that the object to which a member function is applied 
is already passed by reference in a certain sense, because it is using the implicit 
“this” parameter. Hence, the simple types of member function calls are already 
efficiently using a hidden type of pass-by-reference of the object itself.  

Consider this code: 

    int MyClass::fn() // member function 

    { 

        return x; 

    } 

It is not faster with a non-member friend function call that uses an explicit 
reference parameter. This code will not be more efficient (and is probably less 
efficient): 

    int fn(MyClass & object) // friend function 

    { 

        return object.x; 

    } 

Specialize functions with default arguments 

Every default function argument is a place where you can optimize. Default 
arguments to functions are not a source of inefficiency in themselves, and cost no 
more than using a fixed-argument function and passing some constants explicitly. 
However, the use of default arguments indicates the possibility of improving 
efficiency by replacing a single function with a number of specialized functions. 

How to do this? Instead of one function with a default argument, create two 
functions using function overloading. The specialization of the function into two 
separate functions will often make other optimization techniques possible, thus 
improving overall efficiency at the cost of some duplication of executable code. As 
an example of the possibilities that can exist, consider the function with default 
arguments: 

    void indent(int n = 4) // default argument n=4 

    { 

        for (int i = 0; i < n; i++) 

            cout.put(’ ’); 

    } 
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Rewriting this single function as one general function and one specialized function 
leads to opportunities for optimization in the specialized function. In this case, loop 
unrolling can be employed: 

    void indent() // Specialized function (n=4) 

    { 

        cout.put(’ ’); // Loop completely unrolled 

        cout.put(’ ’); 

        cout.put(’ ’); 

        cout.put(’ ’); 

    } 

 

    void indent(int n) // General function 

    { 

        for (int i = 0; i < n; i++) 

            cout.put(’ ’); 

    } 

Note that this optimization is also limited in scope, as there any need to change any 
other code that calls the functions. The C++ compiler will automatically make the 
correct choice of which overloaded function to call. Another thought for improved 
readability is to name the specialized function differently (e.g., indent4), which 
requires calls to the function to be changed. However, default arguments are 
certainly convenient and it’s a slight increase in efficiency versus readable style. 

Medium-Sized Slugs 

There are a lot more examples of possible inefficiencies in C++ coding. Some of 
the types of errors that are “medium-sized” slugs include: 

• Automatic array initializations with constant data. 

• Loop test function calls (i.e., expensive loop conditional tests). 

• Member initializations in the constructor body (they should be in the 
initializer lists). 

• Program startup hidden initializations (global or static object 
constructors). 

• Small non-inline functions called frequently. 

• Busy wait loops. 

• Unnecessary code inside loops. 

• C++ classes wrapping simple data types (e.g., overuse of “smart pointers” 
or “smart integer” classes). 

• Overuse of standard string concatenation operations. 

• Recursion is almost always a slug. 
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Automatic Array Repeated Initialization 

A simple example of unnecessary double initializations is any type of large local 
variable, such as an automatic array. When a function makes use of a large array 
variable with constant data, or even a large constant object, the variable should 
probably be declared as both “const” and “static”, even if it need not retain its 
value between calls. Consider the following code example: 

    char *convert(int day) 

    { 

        char *days[] = { "Monday", "Tuesday", "Wednesday", 

            "Thursday", "Friday", "Saturday", "Sunday" }; 

        return days[day]; 

    } 

The initialization of array “days” illustrates a code inefficiency. The initialization 
of “days” occurs every time the convert function is entered. It would be much 
more efficient to declare “days” as a static variable to avoid it being re-
initialized, and also “const” to help the compiler optimize. 

Data Structure Double Initialization 

If you have an initialization routine that does a lot of work, it sometimes becomes 
a slug by accident. I’m not talking about a single variable initialization, but the 
initialization of a large program data structure at startup, like a precomputed 
lookup-table or a perfect hashing algorithm. In the design patterns vocabulary, such 
a situation is a “singleton” data structure, where only a single object ever exists in 
the program. It’s easy to lose track of whether its initialization routine has been 
called, and then it gets called twice (or more!). 

An example would be some of the precomputation methods whereby a large 
lookup-table is initialized at program startup. For example, a 24-bit lookup table 
has been used elsewhere in this book to optimize AI activation functions. 

The way to avoid the slug of double-initialization is simply to track calls to the 
initialization routine. The idiom that I use is a local static variable of standard 
type bool at the start of the initialization function: 

    static bool s_once = false; 

    if (s_once) { 

        aussie_assert(!s_once);  // Should be once only 

        return;  // Avoid double intialization! 

    } 

    s_once = true; 



David Spuler                                               294 
 

Another way is to actually count the calls with an integer, which is a generalization 
that works for additional scenarios: 

    static int s_calls = 0; 

    ++s_calls; 

    if (s_calls > 1) { 

        aussie_assert(s_calls <= 1); 

        return;  // Avoid double intialization! 

    } 

You can wrap these multiple lines of code up into a handy and elegant single 
“aussie_assert_once” macro, if you want a simpler method. 

Singleton global objects. If you’ve done the hard yards to declare a big data 
structure like this as its own class, then you can simply instantiate only one object 
(i.e., as a global). The C++ class infrastructure does well in ensuring that a 
constructor is only called once. Even so, it may be worthwhile to declare 
a static data member and use similar logic to ensure that initialization on this 
object isn’t ever done twice. 

In any of these situations, it’s a worthwhile investment of a couple of CPU 
instructions, an increment and a test, to avoid accidentally running the whole 
routine again. Since the code is virtually identical for all cases, to avoid copy-paste 
typos, you could even hide these few statements behind a standard C++ 
preprocessor macro with a name of your choosing Or you could even use 
an inline function with the “return” statement changed to throwing an 
exception. 

Busy waiting for input 

Humans are very slow compared to computers. In particular, a computer can do 
much work in the background, even when handling the (slow) interactive input of 
a human. Hence, one method of improving efficiency is to perform background 
processing while awaiting input, instead of using blocking input that waits for a 
keypress before doing anything. In other words, you can’t use std::cin or scanf for 
non-blocking keypress polling. 

A common example of this idea is chess-playing programs that “think” during their 
opponent’s time. The computer can continue its game-tree analysis while waiting 
for the player to press a key or click a mouse. The C++ standard provides no simple 
standardized function for non-blocking input.  
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In general, there are two ways: 

• Keyboard polling API calls (non-portable). 

• Multi-threading with input on one thread and processing on another. 

There are various non-portable ways to poll for key presses. For example, on 
Windows there’s the “_getch” or “kbhit” functions (also “_kbhit”), which are 
all deprecated. Assuming you’ve found a workable polling API call, at some regular 
interval, perhaps before each node of the game tree is analyzed, the chess program 
checks if a key has been pressed. If a key has been pressed, the chess program stores 
information about its current analysis, and processes the user’s keystroke. Unless 
the key press completes the user’s move, the background analysis can continue after 
processing the key. 

Overall, there’s no simple and standardized way to do non-blocking input in C++. 
This is probably because of C’s ancestry, where it was difficult to poll the keyboard 
on a traditional UNIX line terminal. Multi-threading can be used in C++ to achieve 
the result instead. 

Slow disk I/O 

The cost of performing I/O on disk files can make up a large proportion of the 
run-time cost of some programs. For reducing the amount of data to be read from 
or written to the disk, the main methods are: 

• Use smaller records. 

• Cache frequently used records. 

• Buffer multiple reads or writes. 

• Compress data. 

• Use better data structures. 

A very simple method of reducing disk I/O is to reduce the size of records being 
read or written. This can be achieved using many of the methods to create smaller 
objects. There are various methods in C++ to reduce a class object’s byte size: 
unions, bit-fields, packing, smaller data types, or reordering data members. 

Caching is useful if some records are being read more often than others. It is a very 
general idea and there are many possible implementations. You can even create 
your own caching mechanism. 

 



David Spuler                                               296 
 

It may be possible to keep all of the most frequently used records in main memory, 
writing them to disk only at the end of the program (even caching records in 
memory and writing them to disk for every modification will still avoid the cost of 
multiple disk reads). 

If this method cannot be used, try using several memory locations for record I/O, 
and whenever a read operation is required, examine these in-memory records first. 
If any of them is the required record, the cost of a disk read is avoided. Caching 
always has a slight overhead, and may increase run-time slightly if the desired 
records are rarely in memory; however, it will never increase the amount of disk 
I/O and the computational overhead is likely to be small compared to the cost of 
reading a record from disk. 

When reading or writing multiple contiguous records, disk I/O can be speeded up 
by reading in a number of records each time. The advantage is that buffering 
multiple operations reduces the number of disk seek operations. For example, when 
using <stdio.h>, the buffering of file input/output can be changed using 
the setbuf and setvbuf functions. 

Another alternative is to use other low-level I/O functions, such as the 
Linux open, read and write functions. However, this method reduces 
portability of the code. 

When the amounts of data being read are quite massive, the level of disk I/O can 
be reduced by compressing the data in the file. Read and write operations then have 
the overhead of uncompressing or compressing the data, but the cost of this 
computation may well be less than that of the disk I/O (or it might also be more; 
be careful!). However, methods of compressing data are beyond the scope of this 
book. 

The use of a different data structure for data in disk files is often worthwhile. In 
particular, if the disk file is being searched, then many search algorithms are 
applicable. For example, binary search can be performed on a direct access file if 
the data is sorted. However, even binary search is inefficient for large disk files, and 
data structures specifically intended for disk data should be used. The B-tree is a 
commonly used data structure, and hashing is another possibility. Unfortunately, 
these algorithms are highly advanced and again beyond the scope of this book. 

Incorrect choice of loop 

Although the choice of loop is largely a matter of style, there is an important 
difference between the post-tested “do” loop, and the pre-tested “for” and 
“while” loops. The loop condition of a do-while loop is not evaluated on the 
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first iteration and the loop body is always executed at least once. However, 
a for or while loop condition is evaluated before the first iteration and the loop 
body need not be executed at all. A common form of minor inefficiency is declaring 
loops that are always executed the first time, such as: 

    bool done = false; 

    while(!done) { 

        // .... 

    } 

It is more efficient to use the do loop, which avoids a single evaluation of the loop 
condition: 

    bool done = false; 

    do { 

        // .... 

    } while(!done); 

The use of the correct type of loop is also helpful to the optimizer. It is valuable to 
know that a code segment is always executed once. 

Infinite loops are control flow structures that can also be detected and used by the 
optimizer. Hence, you should code an infinite loop explicitly by using one of the 
common idioms: 

    for(;;)       // Forever 

    while(1)      // Common 

    do..while(1)  // Not commonly used 

This allows the compiler to generate efficient code, because you’ve made it easy for 
the compiler to recognize the loop as infinite. 

Exit loops and functions early 

Control structures should be exited as soon as possible, including function paths 
and loops. This means judicious use of the return statement for functions 
and break or continue for loops. 

Using “return” as early as possible in a function is efficient. It prevents 
unnecessary code being executed. Testing for edge cases at the start of a function 
is an example of using the return statement to do “easy cases first” or “simple 
cases first” optimizations. 



David Spuler                                               298 
 

Exit loops early. Similarly, both break and continue are efficient, as no more 
of a loop is executed than is necessary. For example, consider the code using a 
Boolean variable “done” to indicate the end of the loop, as in: 

    done = false; 

    while (!done) { 

        ch = get_user_choice(); 

        if (ch == ’q’) 

            done = false; 

        else 

            ... // rest of loop 

    } 

The faster code has a break statement used to exit the loop immediately: 

    while (1) { // Infinite loop 

        ch = get_user_choice(); 

        if (ch == ’q’) 

            break; // EXIT EARLY! 

        else 

            ... // rest of loop 

    } 

Unfortunately, the overuse of jump statements such as break and continue can 
make the control flow of a program less clear, but professional C++ programmers 
are used to these statements being used often. 

More Slug Repellent 

There’s plenty of other optimizations in the other chapters on compile-time 
optimizations, code transformations, loop optimizations, and AVX vectorization. 
Well, actually most of the book! Nevertheless, here’s a list of some more C++ code 
optimization techniques for you to consider. Some of the bigger ideas: 

• Use “move constructors” instead of copy constructors where appropriate 
(since C++11). 

• Use static data members where appropriate, so they are initialized once 
only. 

• Use std::sort rather than qsort. 

• Don’t put try..catch inside an inner loop that’s a bottleneck. 

• Use std::bitset for bit sets or bit vectors. 

• Use the “iterators” design pattern rather than returning a full scan of a data 
structure all at once (saves memory and allows early exit). 
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• Consider basic C++ arrays instead of std::vector if it has a fixed size 
(known at compile-time) or its maximum size is small enough. 

• Consider C++20 coroutines where appropriate for the architecture. 

• Structure of arrays (SoA) data layout is more vectorizable than Array of 
Structures (AoS). 

And some of the smaller optimizations: 

• Commonly used object or struct fields should be first. On some platforms, 
smaller offsets from the start of an object are accessed faster. Also, the very 
first field has offset zero, which is optimized away, so put the most used 
field first. 

• Avoid long else-if sequences. You are effectively doing linear search on 
the problem space in a long block of if-else-if statements. The best 
alternative is to use a switch statement, if the conditions are constants. 
For non-constant conditions or string comparisons, consider tabularizing 
the options and/or using heuristics to bifurcate the search space (e.g., start 
with a switch on the first letter of a string). 

• Use compact numeric ranges for switch. If the case numbers are close 
together, the compiler will probably use a lookup-table in assembler. If the 
cases are sparse, it can be forced to do an if-else-if equivalent in 
machine code. 

• Correct choice of loop. If the condition is true at the first iteration, use do-
while loops. 

• Instead of range checking a signed integer with “i>=0 && i < MAX” use 
a typecast with “(unsigned)i<MAX” because negatives become large 
unsigned positives, and a cast from int to unsigned int isn’t a real 
instruction at run-time. 

• Enable the FTZ (“flush-to-zero”) and/or DAZ (“denormals-are-zero”) 
floating-point modes on your CPU, even though they violate the IEEE 
754 standard. You probably don’t care about tiny floating-point numbers 
in your weight or probability calculations. 

• Enable GCC’s floating-point arithmetic speedup options: -ffast-
math, -fno-math-errno, -fno-trapping-math, and -ffinite-
math-only. 

• bsearch is slow. Choose a better method. 

• Use static_assert rather than assert (e.g., to check data type sizes). 

• Copy arrays by wrapping them in a dummy struct and using 
C++ struct bitwise assignment. It might be faster than memcpy. 

• Use memcpy rather than memmove if you’re sure the arguments won’t 
overlap. 
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• Move local non-static objects outside of a critical loop. Reuse the same 
object rather than re-running constructors and destructors every loop 
iteration. Add a “reset” member function if needed. 

• Use scaling factors that are a power-of-two, so that multiplication or 
division can be a bitshift. 

• Specialize a function with a void and non-void version if you find 
yourself ignoring the return value sometimes. This avoids all of the 
calculations to determine the return value inside the void function, 
because the function itself cannot tell whether or not the caller will use its 
return value. 

• Prefer pre-increment (++i) to post-increment (i++) for non-scalar values. 
And it’s better to use pre-increment even for “int” types, even though it’s 
the same, just to get into the habit. 

• Use the GCC __builtin_unreachable() statement and the 
“noreturn” function attribute to help the GCC optimizer identify dead 
code paths, allowing unreachable code removal (not that we care that 
much) and also better optimization of path-specific optimizations on other 
live paths (e.g., compile-time constant propagation). 

• Test the first character of two strings directly with character tests before 
calling strcmp. 

• Replace calls to “round”, “floor” or “ceil” functions with a type cast 
to int (as an approximation). 

• Consider using the 
simpler putchar/putc/fputc or puts/fputs functions rather 
than printf or fprintf. 

• Write your own versions of abs and fabs/fabsf (but benchmark it). 

• Avoid the floating-point pow function for computing integer powers. 

• Instead of strlen("literal") declare it as an 
initialized char[] array variable and use sizeof(arr)-1. 

• Merge a large number of function parameters into an object. Don’t pass 10 
Boolean flags as differently named function parameters. Create an object 
or structure and make them fields instead. 

• Avoid calling strlen in a “for” loop conditional. 
Compute strlen before the loop, or test for the null byte. 

• Merge multiple Boolean function parameters into a bit set. packed into 
an int or long. The gain from passing fewer values as function 
arguments will be offset by the cost of packing and unpacking bits, but still 
should be better. 

• Use int type mostly, not char or short. Maybe prefer int to size_t, 
too. 

• Specialize functions being called with a constant for an argument using a 
template function with an integer field. This will increase code size, but the 
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constant will be propagated more at compile-time, and you also don’t have 
the cost of passing it as an argument. 

• Add “noexcept” specifiers to functions wherever it applies, because this 
allows the compiler to know not to worry about adding any extra exception 
handling code. 

• If you’re “searching” an array or set of constant integers, known at 
compile-time, consider “proceduralization” by putting the numbers as 
cases in a switch. (Trust the compiler engineers.) 

• Consider writing your own faster atoi/itoa functions, as the standard 
libraries need to handle lots of rare cases, making them slower. (I’m not 
sure I agree and you might want to benchmark.) 

• Don’t overuse “alignas” to specify address alignments if you don’t need 
them, as the enforcement of alignment requirements can impose runtime 
cost. 

• sprintf is a slow and unsafe function. snprintf is safer but still slow. 
Find another way. 

• Post-increment can be faster in pointer arithmetic, so prefer using the 
normal idiom “*ptr++” rather than “*++ptr” to scan a vector. 
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